CONTENTS

Chapter I

INTRODUCTION AND GENERALITIES

1.0	Preliminary remarks; the organization of this memoirl
1.1	Notations, conventions, and some facts needed later3
1.2	Spherical functions on G with respect to K5
1.3	Spherical functions of class u and the induced
	representation $R_u = ind u \dots 7$ $K + G$
1.4	The Plancherel's and inversion formulas for a type I group12
1.5	The Plancherel's formula for $S_{\mathbf{u}}^2$ for all \mathbf{u} implies the
	Plancherel's formula for L ² (G)15
1.6	The characters of G as locally constant class functions19

Chapter II

THE IRREDUCIBLE UNITARY REPRESENTATIONS OF PGL(2, Ω) AND THEIR CHARACTERS

1.7 Exhaustion of algebraically irreducible representations

2.1	The principal series	of i	rreducible	unitary	representations	
	of PGL(2,Ω)	· • • •				3

of G and spherical functions......21

- 2.2 The supplementary series of irreducible unitary representations of G......39
- 2.3 The one-dimensional representations of G......40
- The special representations of G......40 2.4
- 2.6 The characters of the unitary representations of G......45

	Char	oter III
A	DESCRIE	PTION OF ALL IRREDUCIBLE REPRESENTATIONS OF $K = PGL(2, 0)$
	3.1	Representation theory of the integer triangle subgroup
		T N K of K51
	3.2	A description of the irreducible representations of K
		contained in ind 155 B N K+K
	3.2.	1 Two miscellaneous results58
	3.2.	2 Some estimates on the dimensions of the spaces $S_u(\nu)$ 63
	3.3	The decomposition of the restrictions to K of the
		irreducible representations of the discrete series of G68
	3.3.	1 Classification of all the irreducible representations
		contained in the restrictions to K of the discrete
		series of G; proofs of irreducibility, equivalence,
		and continuity for the representations $ exttt{T}^{\pi}$ of the
		discrete series of G79
	3.4	A catalogue of irreducible representations of K94
	3.5	The characters of the irreducible representations of K98
	Chap	ter IV
СО	MPUTATI	ON OF THE CHARACTERS OF G AND OF K
	4.1	The computation of characters for the principal series of
		G and for the irreducible representations of K contained
		in ind 1, also for the supplementary series and the BN K+K

special representations......106

4.2 Computation of the characters of the irreducible repre-
sentations $ ext{T}^{ extsf{T}}$ of the discrete series of G and of the
irreducible representations of K contained in res T^{π} 113 G+K
4.2.1 An integral formula114
4.2.2 Evaluation of the integral121
Chapter V
THE FOURIER TRANSFORMATION AND INVERSION FORMULAS FOR ${f s}^0_{f u}$ FOR ALL ${f u}$
5.1 What is to be done138
5.2 The Fourier transform and inversion formulas for $ { m S}_{ m u}^{ m 0} $ in
the case u is one-dimensional141
5.3 The Fourier transform and inversion formulas for S_{u}
and Susgn
5.4 The Fourier transformation and inversion formulas for s_{u}^{0} ,
$u=u_{\alpha}$, a representation of the principal series of K152
5.5 The Fourier transform and inversion formulas for $\mathrm{S}_{\mathrm{u}}^{0}$,
uεindl and u∉indl
5.6 The Fourier transform and inversion formulas for $S_{ m u}$,
u any irreducible representation of K which is not
contained in ind l169 B∩K+K
5.7 The Fourier transform and inversion formulas for $S_{\mathbf{u}}^{0}$
for u ∈ ind l176 T∩K†K

- 5.7.1 The matrix coefficients for $M(y^n, \alpha)$ in the space T+TO K 5.7.2 The matrix coefficients for $M(y^n, \alpha)$ in the space H_i^{α}
- for the case res $\alpha = \alpha_1$ with α_1 primitive mod $\underline{\underline{P}}^m$, $\underline{T} + \underline{T} \cap K$
- 0<m<i/>1/2......179 5.7.3 The matrix coefficients for T^{π} in the space \underline{P}_{i}^{π} for the
- case in which π is primitive mod p^{m*} and $i \ge 2m \delta(\lambda) + \dots + 180$