TABLE OF CONTENTS

TNUCCOURTE	.		Pag
INTRODUCTION	1		1
CHAPTER I:	COHOMO	DLOGY MANIFOLDS, by A. Borel	5
	§1.	Preliminaries	5
	§2.	Local Betti Numbers Around a Point	7
	§ 3.	The Notion of Cohomology Manifold	9
	§4.	Some Properties of Cohomology Manifolds	10
	§5·	Appendix on Cohomological Dimension	18
CHAPTER II:	HOMOLO	GY AND DUALITY IN GENERALIZED MANIFOLDS by A. Borel	23
	§1.	Homology Groups for Locally Compact Spaces	23
	§2.	Duality in Generalized Manifolds	25
	§3 •	Existence of Fundamental Sheaves for Homology	27
	§4.	Closed Subsets of Euclidean Spaces	30
	§5·	Complements	31
CHAPTER III:	PERIO	OIC MAPS VIA SMITH THEORY, by E. E. Floyd	35
	§1.	The Leray Spectral Sequence	35
	§2.	Transfer Homomorphism	37
	§ 3.	An Euler Characteristic Formula	39
	§4.	The Smith Sequences	4 O
	§5·	Orbit Spaces of Finite Groups	43
CHAPTER IV:	THE ACTION OF Z OR T1: GLOBAL THEOREMS, by A. Borel		49
	§1.	Transformation Groups	49
	§ 2.	Some Remarks on the Cohomology of B	50
	§ 3•	The Space X _C	52
	§4.	The Fixed Point Set of a Prime Period Map in a Cohomology Sphere	55
	§5·	The Action of the Circle Group	60
	§6 .	The Quotient of a Cohomology Sphere by $\mathbf{Z}_{\mathbf{p}}$ or \mathbf{T}^{1}	63
CHAPTER V:	THE AC	TION OF Z OR T ¹ : LOCAL THEOREMS, by Borel	67
	§1.	Conservation of Cohomological Local Connectedness	67
	§2.	The Fixed Point Set of a Prime Period Map in a Cohomology Manifold	74
	§ 3•	The Fixed Point Set of a Toral Group in a Cohomology Manifold	80
	§4.	Remarks on Local Groups of the Quotient Space	83

CONTENTS

				Page
CHAPTER	VI:		OPY SUBGROUPS OF TORAL GROUPS, by E. Floyd	85
		§1.	Introduction	85
		Ū	A Regular Convergence Theorem	86
			Two Lemmas	89
			Proof of Theorem 1.2	90
CHAPTER	VII:		ENESS OF NUMBER OF ORBIT TYPES, by E. Bredon	93
		§1.	Preliminary Remarks	93
		§2.	Statements of the Main Results	93
		§3•	Proof of the Main Theorem	9 5
CHAPTER	VIII:		S AND EQUIVARIANT IMBEDDINGS, by S. Palais	101
		§1.	Notation and Preliminaries	101
		§2.	Orbit Types	104
		§ 3.	Slices	1 05
		§4.	Equivariant Imbeddings in Euclidean Space	112
CHAPTER	IX:	ORBII	S OF HIGHEST DIMENSION, by D. Montgomery	117
		§1.	Introduction	117
		§2.	The Set B	117
		§3•	The Set D	121
		§4.	The Set B ∩ D	123
		§5·	Conditions Under Which $\dim_{\mathbb{Z}} D \leq n - 2$	125
		§6.	Remarks on the Differentiable Case	128
CHAPTER	X:	THE SP	ECTRAL SEQUENCE OF A BIFILTERED MODULE, . Borel	133
		§1.	Spectral Sequences	133
		§2.	The Notion of Bifiltration	134
		§3•	The Terms E_0 and E_1	136
		§4.	Two Further Assumptions	139
		§5·	The Term E _o	141
		§6.	Homomorphisms	142
		§7·	Remarks	144
CHAPTER	XI:	THE SP	ECTRAL SEQUENCE OF FARY, by A. Borel	145
		§1.	Sheaves	145
		§2.	Continuous Maps	146
		§ 3•	The Spectral Sequence of Fary	149
		§4.	Locally Compact Spaces	152

CONTENTS

				Pag
CHAPTER	XII:		POINT THEOREMS FOR ELEMENTARY TATIVE GROUPS I, by A. Borel	157
		§1.	Some Fiberings	157
		§2.	The Topology of the Leray Sheaf	160
		§3.	Fixed Point Theorems	162
		§4.	Applications to Projective Spaces	167
		§5.	Applications to Compact Lie Groups	169
		§6.	Applications to Homologically Kählerian Manifolds	170
CHAPTER	XIII	FIXED	POINT THEOREMS FOR ELEMENTARY TATIVE GROUPS II, by A. Borel	173
		§1.	Notation	173
		§2.	Cohomology Spheres	175
		§3.	Some Local Concepts	180
		§4.	Cohomology Manifolds	18 1
CHAPTER	XIV:	ONE O	R TWO CLASSES OF ORBITS, by A. Borel	185
		§1.	One Class of Orbits on Spheres	185
		§2.	A Sufficient Condition for the Existence of Fixed Points on R ⁿ	188
		§ 3.	Two Classes of Orbits on Euclidean Space	190
CHAPTER	XV:	FIXED DIMENS	POINT SETS AND ORBITS OF COMPLEMENTARY ION, by G. E. Bredon	195
		§1.	Introduction	195
		§2.	Preliminary Results	198
		§3•	A Theorem on Cross-Sections	207
		§4·	Case I. rank (G) = rank (H)	211
		§5•	Case II. rank (H) < rank (G)	214
		§6.	Rank One Case	215
		§7·	A Local Cross-Section for the Orbits of G Near F	223
		§8.	Conclusion of the Proof of Theorem 1.4	230
CHAPTER	XVI:	REMARK by A.	S ON THE SPECTRAL SEQUENCE OF A MAP, Borel	233
		§1.	Cohomology with Compact Supports	233
		§2.	The General Case	235
		§3•	Inductive Limits	239
		§4.	On the Leray Sheaf	241
			A dean of Welidity for the Kunneth Rule	2113