Contents | Forewo | d by Lotfi A. | Zadeh | | |----------|---|---|----------------------------------| | Preface | | | | | Series F | oreword | | | | Contrib | iting Author | s | | | | Introduction
ubois, Henri F | | 1 | | 1 | Fuzzy Sets | From Basic Concepts to Applications | 4 | | 11 | The Role of | Fuzzy Sets in Information Engineering | 9 | | Ш | Conclusion | The Legitimacy of Fuzzy Sets | 13 | | Refe | rences | | 16 | | PART I | FUZZY | SETS | | | | | and Basic Notions
asiewicz and Henri Prade | 21 | | 1.1 | Introduction | | 21 | | 1.2 | 1.2.1 F
1.2.2 F
1.2.3 F | cal Emergence of Fuzzy Sets
Fuzzy-ism
Philosophical Background
From Logic to Fuzzy Logics
From Sets to Fuzzy Sets | 24
25
26
31
36 | | 1.3 | 1.3.1 F
1.3.2 S
1.3.3 E
1.3.4 E
1.3.5 S | ns of Fuzzy Set Theory Representations of a Fuzzy Set Scalar Characteristics of a Fuzzy Set Extension Principles Basic Connectives Set-Theoretic Comparisons Between Fuzzy Sets Fuzzy Sets on Structured Referentials | 42
47
50
53
58
66 | | 1.4 | Notions Dei | rived from Fuzzy Sets
Fuzzy Relations | 70
70 | | | 1.4.2 | Possibility Measures and Other Fuzzy Set-Based Functions | 77 | |-----|---|---|--| | 1.5 | Generalis
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.5.7
1.5.8 | sations and Variants of Fuzzy Sets L-Fuzzy Sets Fuzzy Sets as Ordering Relations Toll Sets Interval-Valued Fuzzy Sets Type 2 Fuzzy Sets Probabilistic Extensions of Fuzzy Sets Level 2 Fuzzy Sets Fuzzy Rough Sets and Rough Fuzzy Sets | 80
81
82
84
86
88
89
90 | | 1.6 | Semantio
1.6.1
1.6.2
1.6.3
1.6.4 | s and Measurement of Fuzzy Sets What Membership Grades May Mean Measuring Membership Grades The Semantic Meaningfulness of Fuzzy Logic Membership Grades: Truth Values or Uncertainty Degrees Towards Membership Function Measurement | 93
95
97
100
102
104 | | 1.7 | Conclusion | on | 106 | | Ref | erences | | 106 | | | | ic Operators and Quantifiers
onald R. Yager | 125 | | 2.1 | Introduct | ion | 125 | | 2.2 | Complen
2.2.1
2.2.2 | nentation
Representation of Negations
Other Important Results | 127
129
129 | | 2.3 | Intersect
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5 | ion and Union Triangular Norms and Conorms The Special Role of Minimum and Maximum Continuous Archimedean t-Norms and t-Conorms Parametered Families of t-Norms and t-Conorms Complementation Defined from Intersection and Union | 130
131
134
135
141
145 | | 2.4 | Inclusion
2.4.1
2.4.2 | and Difference Fuzzy Implications Fuzzy Implications Defined by t-Norms, t-Conorms and Negations | 146
147
148 | | | 2.4.3
2.4.4
2.4.5 | Negations Negations Defined by Implications Axioms for Fuzzy Inclusions Difference of Fuzzy Sets | 153
154
156 | | 2.5 | Equivale | ence | 158 | | 2.6 | Uninorm
2.6.1 | s
Important Classes of Uninorms | 159
160 | | 2.7 | r Mean Aզ | ggregation Operators | 162 | | 2.8 | 3 Ordered | Weighted Averaging Operators | 165 | | 2.9 | Quantific | ers | 172 | | 2.1 | IO Linguisti | c Quantifiers and OWA Operators | 173 | | | | | | vii | |----|---------|--|--|---| | | 2.11 | Weighted | Unions and Intersections | 179 | | | 2.12 | Prioritized | Fuzzy Operations | 181 | | | 2.13 | Other Agg
2.13.1
2.13.2
2.13.3 | regation Operators on Fuzzy Sets
Symmetric Sums
Weak t-Norms
Compensatory Operators | 184
184
185
186 | | | Refere | ences | | 187 | | En | npirica | l Work | embership Functions: Theoretical and urhan Türksen | 195 | | | 3.1 | Introduction | on and Preview | 195 | | | 3.2 | Interpretat
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5 | tions of Grade of Membership
The Likelihood View
Random Set View
Similarity View
View from Utility Theory
View from Measurement Theory | 197
198
200
201
202
203 | | | 3.3 | Elicitation
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9 | Methods Polling Direct Rating Reverse Rating Interval Estimation Membership Exemplification Pairwise Comparison Fuzzy Clustering Methods Neural-Fuzzy Techniques General Remarks | 211
212
213
213
214
214
215
216
216 | | | 3.4 | Summary | | 218 | | | Refere | ences | | 220 | | | Apper | dix: Ordere | ed Algebraic Structures and their Representations | 228 | | | RT II | FUZZ | Y RELATIONS | | | | | luction to | Fuzzy Relations | 233 | | | 4.1 | Introduction | on | 233 | | | 4.2 | Basic Con | ncepts | 235 | | | 4.3 | Coverings | and Proximity Relations | 238 | | | 4.4 | Similarity | Relations and Fuzzy Partitions | 241 | | | 4.5 | Fuzzy Ord | derings | 246 | | | 4.6 | Represen | tation Theorems | 254 | | | Refere | ences | | 258 | | | | | e Relations: Advanced Material | 261 | |-----|--------|--|--|--| | Die | | | an Jacas and Jordi Recasens | | | | 5.1 | Introduct | ion | 261 | | | 5.2 | How to B | uild Fuzzy Equivalence Relations | 263 | | | 5.3 | Fuzzy Ed | quivalence Relations and Generalized Metrics | 267 | | | 5.4 | The Gen | erators Set: Granularity, Observability and Approximation | 270 | | | 5.5 | Dimensio | on and Basis — Their Calculation | 279 | | | Refere | ences | | 288 | | 6 | | | | | | | | ıl Solutioı
De Baets | n Methods for Fuzzy Relational Equations | 291 | | | 6.1 | Introducti | ion | 291 | | | 6.2 | Images a
6.2.1
6.2.2 | and Compositions
Relational Calculus and Boolean Equations
Fuzzy Relational Calculus | 293
293
294 | | | 6.3 | Types of | Inverse Problems | 296 | | | 6.4 | Sup-℃ E
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5 | quations The Equation $\Im(a,x) = b$ Greatest Solution — Solvability Conditions Complete Solution Set Systems of Sup- \Im Equations Fuzzy Relational Equations | 297
297
299
301
307
308 | | | 6.5 | Left Inf- 9
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5 | Equations The Equation $\Im(x,b)=a$ Greatest Solution — Solvability Conditions Complete Solution Set Systems of Left Inf- \Im Equations Fuzzy Relational Equations | 314
314
316
317
319
320 | | | 6.6 | Right Inf-
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5 | J Equations The Equation J(a,x) = b Smallest Solution — Solvability Conditions Complete Solution Set Systems of Right Inf-J Equations Fuzzy Relational Equations | 321
321
323
324
326
327 | | | 6.7 | Approxim | nate Solution Methods | 329 | | | 6.8 | Further F
6.8.1
6.8.2
6.8.3
6.8.4 | Reading Various Generalizations Miscellaneous Problems Implementations Applications | 330
330
330
332
332 | | | Refere | ences | | 333 | ## PART III UNCERTAINTY | Misunde | ility Theory, Probability and Fuzzy Sets:
derstandings, Bridges and Gaps
Dubois, Hung T. Nguyen and Henri Prade | 343 | |---------|---|---| | 7.1 | Introduction | 343 | | 7.2 | Some Misunderstandings Between Fuzzy Sets and Probab
7.2.1 Membership Function and Probability Measure
7.2.2 Fuzzy Relative Cardinality and Conditional Prob
7.2.3 Fuzzy Sets Can Be Cast in Random Set Theory
7.2.4. Membership Functions as Likelihood Functions | ility 346
346
ability 349 | | 7.3 | Possibility Theory 7.3.1 The Meaning of Possibility 7.3.2 Possibility Distributions 7.3.3 Information Content of a Possibility Distribution 7.3.4 Possibility and Necessity of Events 7.3.5 Joint Possibility, Separability and Non-Intervariables 7.3.6 Certainty and Possibility Qualification and the Exproblem 7.3.7 Conditional Possibility and Possibilistic Independence Combination Rules in Possibility Theory | 364
ktension
367 | | 7.4 | Quantitative Possibility Theory as a Bridge Between Proand Fuzzy Sets 7.4.1 Possibility Theory and Bayesian Statistics 7.4.2 Upper and Lower Probabilities 7.4.3 Possibility Distributions as Special Cases of Four Sets and Belief Functions 7.4.4 Possibility-Probability Transformations 7.4.5 Possibility Theory and the Calculus of Likelihood 7.4.6 Probabilistic Interpretations of Fuzzy Set Operation 7.4.7 Possibility Degrees as Infinitesimal Probabilities | 378
378
380
Random
381
383
Is 389 | | 7.5 | Towards Operational Semantics of Possibility Distribution Fuzzy Sets 7.5.1 Frequentist Possibility 7.5.2 Uncertainty Measures and Scoring Rules 7.5.3 Betting Possibilities 7.5.4 Possibility as Similarity 7.5.5 Possibility as Preference and Graded Feasibility 7.5.6 Refinements of Qualitative Possibility Theory | 993
393
394
395
396
397
401 | | 7.6 | Possibility and Necessity of Fuzzy Events: A Tool for Dunder Uncertainty 7.6.1 Possibility and Necessity of Fuzzy Events 7.6.2 Sugeno Integrals 7.6.3 Quantitative Possibility and Choquet Integrals 7.6.4 Decision-Theoretic Foundations of Possibility Th | 402
402
405
406 | | 7.7 | Conclusion | 413 | | Math | hematical Appendix | 414 | | Refe | erences | 423 | | 8
Measures
George J. | s of Uncertainty and Information
. Klir | 439 | |----------------------------|--|---------------------------------| | 8.1 | Introduction | 439 | | 8.2 | Measures of Nonspecificity 8.2.1 Classical Set Theory 8.2.2 Fuzzy Set Theory 8.2.3 Possibility Theory 8.2.4 Evidence Theory | 440
440
443
444
446 | | 8.3 | Entropy-Like Measures 8.3.1 Probability Theory 8.3.2 Evidence Theory 8.3.3 Possibility Theory | 447
447
449
451 | | 8.4 | Measures of Fuzziness 8.4.1 Fuzzy Set Theory 8.4.2 Fuzzified Evidence Theory | 452
452
453 | | 8.5 | Conclusions | 454 | | Refere | ences | 454 | | 9 | | | | Quantifyi | ing Different Facets of Fuzzy Uncertainty Pal and James C. Bezdek | 459 | | 9.1 | Introduction | 459 | | 9.2 | Different Facets of Fuzzy Uncertainty | 461 | | 9.3 | Measuring Fuzziness 9.3.1 Postulates of Measures of Fuzziness 9.3.2 Various Measures of Fuzziness | 462
462
464 | | 9.4 | Generalized Measure of Fuzziness 9.4.1 Higher Order Measures of Fuzziness 9.4.2 Weighted Fuzziness | 473
473
474 | | 9.5 | Measuring Non-Specificity | 475 | | 9.6 | Conclusions | 477 | | Refere | ences | 478 | | PART IV | FUZZY SETS ON THE REAL LINE | | | | t erval Analysis
bois, Etienne Kerre, Radko Mesiar and Henri Prade | 483 | | 10.1 | Introduction | 483 | | 10.2 | Fuzzy Quantities and Intervals 10.2.1 Definitions 10.2.2 Characteristics of a Fuzzy Interval 10.2.3 Noninteractive Fuzzy Variables | 486
486
492
497 | | 10.3 | Basic Principles of Fuzzy Interval Analysis 10.3.1 The Extension Principle | 498
498 | | | 10.3.2 | Functions on Non-Interactive Fuzzy Variables: Basic Results | E04 | |-----------------|------------------|---|------------| | | 10.3.3 | Application to Usual Operations | 501
505 | | | 10.3.4 | Proper and Improper Representations of Functions | 509 | | 10.4 | Practica | d Computing with Non-Interactive Fuzzy Intervals | 511 | | | 10.4.1 | Parameterized Representations of a Fuzzy Interval | 511 | | | 10.4.2 | Exact Calculation of the Four Arithmetic Operations | 514 | | | 10.4.3 | Approximate Parametric Calculation of Functions of | | | | 10.4.4 | Fuzzy Intervals Approximate Calculation of Functions of Fuzzy Interval | 516 | | | 10.4.4 | Approximate Calculation of Functions of Fuzzy Intervals Using Level-Cuts | 519 | | 10.5 | Alternati | ive Fuzzy Interval Calculi | 521 | | | 10.5.1 | Fuzzy Interval Calculations with Linked Variables | 521 | | | 10.5.2 | Additions of Fuzzy Intervals in the Sense of a Triangular | | | | 10.5.3 | Norm
Multidimensional Fuzzy Quantities | 524 | | | 10.5.4 | Fuzzy Equations and the Optimistic Calculus of Fuzzy | 530 | | | | Intervals | 534 | | 10.6 | Compari | ison of Fuzzy Quantities | 539 | | | 10.6.1 | Positioning a Number with Respect to a Fuzzy Quantity | 540 | | | 10.6.2 | Ranking Fuzzy Intervals via Defuzzification | 541 | | | 10.6.3 | Goal-Driven Ranking Methods | 542 | | | 10.6.4
10.6.5 | Fuzzy Ordering Relations Induced by Fuzzy Intervals
Fuzzy Dominance Indices and Linguistic Methods | 544
553 | | | 10.6.6 | Criteria for Ranking Fuzzy Intervals | 554 | | 10.7 | Conclusi | ion: Applications of Fuzzy Numbers and Intervals | 558 | | Refer | ences | • | 561 | | | | | | | 11
Metric To | opology o | of Fuzzy Numbers and Fuzzy Analysis | 583 | | | | Peter Kloeden | 000 | | 11.1 | Introduct | tion | 583 | | 11.2 | | of Compact Convex Subsets in \mathcal{R}^n | 585 | | | 11.2.1 | Subsets and Algebraic Operations | 585 | | | 11.2.2 | The Hausdorff Metric | 586 | | | 11.2.3 | Compact Subsets of \mathcal{R}^{n}
Support Functions | 587 | | | 11.2.4
11.2.5 | L ^p -Metrics | 588
590 | | | 11.2.6 | Continuity and Measurability | 592 | | | 11.2.7 | Differentiation | 594 | | | 11.2.8 | Integration | 596 | | | 11.2.9 | Bibliographical Notes | 599 | | 11.3 | The Spa | ce \mathscr{E}^n | 600 | | | 11.3.1 | Definitions and Basic Properties | 600 | | | 11.3.2 | Useful Subsets of \mathcal{D}^n and \mathcal{E}^n | 603 | | | 11.3.3 | Bibliographical Notes | 604 | | 11.4 | Metrics o | on C ⁿ | 605 | | | 11.4.1
11.4.2 | Definitions and Basic Properties Completeness | 605
607 | | | 11.4.2 | Separability | 608 | | | | 11.4.4
11.4.5 | Convergence Relationships
Bibliographical Notes | 608
609 | |-------|-------|---|---|---------------------------------| | 1 | 1.5 | Compact 11.5.1 11.5.2 11.5.3 | ctness Criteria
Introduction
Compact Subsets in (ළි ⁿ , d _p)
Bibliographical Notes | 609
609
611
613 | | 1 | 1.6 | Fuzzy S
11.6.1
11.6.2
11.6.3
11.6.4 | et Valued Mappings of Real Variables
Continuity and Measurability
Differentiation
Integration
Bibliographical Notes | 613
613
615
621
624 | | 1 | 1.7 | Interpola
11.7.1
11.7.2
11.7.3 | ation and Approximation
Interpolation and Splines
Bernstein Approximation
Bibliographical Notes | 625
625
628
629 | | 1 | 1.8 | Fuzzy D
11.8.1
11.8.2
11.8.3
11.8.4 | ifferential Equations Introduction Existence and Uniqueness of Solutions Reinterpreting Fuzzy DEs Bibliographical Notes | 630
630
632
632
637 | | 1 | 1.9 | Conclusi | ion | 637 | | R | efere | ences | | 637 | | index | (| | | 643 |