CONTENTS

Preface		•			vii
Introduction		•	•		1
CHAPTER 1. POSITIVE ELEMENTARY INDUCTIVE DEFI	NITIO	ONS		•	6
1A. Monotone operators					6
1B. Relative positive inductive definability					8
1C. Combining inductions					12
1D. Inductive definability on a structure.		•			17
Exercises				•	20
Chapter 2. The stages of an inductive definit	TION				27
2A. The Stage Comparison Theorem .		•			27
2B. Closure ordinals and the Closure Theorem	n	•			30
Exercises		•	•	•	36
CHAPTER 3. STRUCTURE THEORY FOR INDUCTIVE R	ELA	rions			38
3A. Inductive norms and the Prewellordering	The	orem		•	38
3B. Making hyperelementary selections .		•		•	42
3C. The Boundedness and Covering Theorem	s.		•		45
3D. Expanding a structure by an inductive rel	atio	n.			47
3E. Generalization of the theory to richer lan	guag	ges.		•	48
Exercises		•	•	•	51
CHAPTER 4. GAMES AND GAME QUANTIFIERS .					53
4A. Interpreting quantifier strings via games		•		•	53
4B. A canonical form for positive formulas		•		•	57
4C. Explicit formulas for inductive relations		•	•	•	59
Exercises	•	•	•		61
CHAPTER 5. ACCEPTABLE STRUCTURES		•			65
5A. Coding schemes		•		•	65
5B. Satisfaction is hyperelementary.		•	•	•	67
5C. The quantifier G		•	•	•	70
5D. Parametrizations and universal sets .		•	•	•	73
Exercises		•			76

CONTENTS

X

Chapter 6. Inductive second order relations			79
6A. Relativization of inductive definitions; examples.			79
6B. Transitivity, Substitutivity and Positive			
Induction Completeness			83
6C. Extension of the theory to second order relations			90
6D. The class of hyperelementary relations			97
Exercises	•	•	101
Chapter 7. Second order characterizations	•		103
7A. Inductive and Σ_1^1 relations			103
7B. Quasistrategies			104
7C. The Second Stage Comparison Theorem			108
7D. The Abstract Spector-Gandy Theorem			115
7E. The hierarchy of hyperelementary sets			120
7F. Model theoretic characterizations			129
Exercises		•	130
_			
CHAPTER 8. COUNTABLE ACCEPTABLE STRUCTURES			132
8A. The Abstract Kleene Theorem			132
8B. The Perfect Set Theorem			135
8C. The intersection of A-models of second order			
comprehension	•		138
8D. Counterexamples to special properties of			
arithmetic; the language $\mathscr{L}_{\omega_1,G}$	•		141
8E. The Suslin-Kleene Theorem	•		150
Exercises	•	•	158
Chapter 9. The next admissible set			164
OA Constanting C 1	•	•	164
9B. Examples of Spector classes	•	•	168
9C. Structure theory for Spector classes	•	•	
OTS 4.1 * 11.1	•	•	171
	•	•	178
9E. The companion of a Spector class 9F. The next admissible set	•	•	186
Evenines	•	•	201
Exercises	•	•	205
References	•		209
Index	•		213
INDEX OF SYMBOLS			218

218