INTRODUCTION

PART I

SPIN ½ LATTICE SYSTEMS WITHOUT CONSTRAINTS

1.	DEFINITIONS AND GROUP STRUCTURE	1
1.1.	Definition of Spin Lattice Systems	1
1.2.	Thermodynamics and Correlation Functions	2
1.3.	Group Structure for Finite Lattice Systems	3
1.4.	Group Structure for Infinite Systems	10
2.	THE DUALITY TRANSFORMATION	13
2.1.	The Duality Relation	13
2.2.	The High and Low Temperature Expansion	14
2.3.	Duality Transformation for Finite Systems and	
	Duality Relation for the Partition Function	16
2.4.	General Method to Construct a Dual Lattice	20
2.5.	General Properties of the Mapping $oldsymbol{d}$	21
2.6.	Duality Tranformation for General Systems	22
2.7.	Some Examples	26
2.8.	Concluding Remarks and Summary of Results	34
2.9.	Summary of Duality Transformation	37
3.	DUALITY RELATION FOR THE CORRELATION FUNCTIONS	38
3.1.	Equilibrium State and Boundary Conditions	38
3.2.	Duality Relations for Correlation Functions	
	of Finite Systems	42
3.3.	Symmetric States and Symmetric Algebra	47
3.4.	Applications	51

	TIMBLE TRANSPITIONS WITH SPONTANEOUS STEELING	
	BREAKDOWN. ERGODIC DECOMPOSITION	59
4.1.	Introductory Remarks	59
4.2.	Internal and Euclidean Symmetry Group for	
	Infinite Systems. Ergodic Decomposition	60
4.3.	Generalized Peierls Argument	69
4.4.	Application	76
4.5.	Invariant States and States with Free Boundary	
	Conditions	80
4.6.	Phase Transitions without Breakdown of the	
	Internal Symmetry Group	87
5.	SERIES AND CLUSTER EXPANSION	
	AN APPLICATION OF UNIVERSALITY HYPOTHESIS	
	A "GENERALIZED" DROPLET-MODEL	95
5.1.	Introduction	95
5.2.	Ratio method	96
5.3.	Remark about Universality and the Critical	
	Behaviour of the Triangular Model	101
5.4.	A Generalized Droplet-Model	105
5.5.	Analytic Properties of the Generalized Droplet-	
	Model	116
6.	THE PARTIAL TRACE TRANSFORMATION	
	EQUATION FOR THE CORRELATION FUNCTIONS AND	
	REPRESENTATION OF THE SYMMETRY GROUP	122
6.1.	Partial Trace Transformation	122
6.2.	Equation for the Correlation Functions	128
6.3.	Representation of the Symmetry and Translation	
	Group (${\cal S}$ resp. ${\cal T}$)	133
6.4.	Application	137
7.	INVARIANT EQUILIBRIUM STATES AND DUALITY	
	TRANSFORMATION FOR INFINITE SYSTEMS	152
7.1.	Symmetric Equilibrium States	152
7.2.	Symmetric Equilibrium States and Duality	156
7.3.	Duality Transformation and Surface Tension	159

8.	ASANO CONTRACTION AND GROUP STRUCTURE	
	ANALYTICITY PROPERTIES OF THE FREE ENERGY	161
8.1.	Introduction	161
8.2.	Asano Contraction for Polynomial Associated	
	with a Group G < P(B)	163
8.3.	Properties of Small Polynomials	166
8.4.	Analyticity Properties of the Free Energy	169
8.5.	Examples	172
8.6.	Conclusions	174
9.	ANALYTICITY AND UNIQUENESS OF THE INVARIANT	
	EQUILIBRIUM STATE	175
9.1.	Introduction	175
9.2.	Unicity of the $oldsymbol{Z}^{oldsymbol{ u}}$ -invariant equilibrium state	
	at high temperatures	175
9.3.	Unicity of the invariant equilibrium state at	
	low temperature for ferromagnetic systems	177
9.3.	Comparison with other results	179
	PART II	
	SPIN 1 LATTICE SYSTEMS WITH CONSTRAINTS	
	STIN 2 LATITUE STOTES WITH CONSTRAINTS	
1.	DEFINITIONS AND GROUP STRUCTURE FOR SYSTEMS	
	WITH CONSTRAINTS	180
1.1.	Definition and General Properties	180
1.2.	Examples of Systems with Constraints	183
1.2.1.	Systems Satisfying the Subgroup Property	184
1.2.2.	General Hard Core Latttice Systems	185
1.2.3.	k-Vertex Models, k ≤ 16	187
1.3.	Thermodynamics, Gibbs States and some Properties	
	of Finite and Infinite Systems	192
1.4.	Group Structure for Systems with Constraints	194
2.	EXPANSIONS FOR THE PARTITION FUNCTION	196
2.1.	The Low Temperature (L.T.) Expansion	196
2.2.	The High Temperature (H.T.) Expansion	198

3.	PARTIAL TRACE METHOD AND	
	EQUILIBRIUM EQUATIONS	202
3.1.	Partial Trace Transformation	202
3.1.1.	General Framework	202
3.1.2.	Partial Trace Method for General Hard Core	
	Systems	204
3.1.3.	Partial Trace Method Applied to Systems	
	Satisfying the Subgroup Property	206
3.2.	Equations for the Correlation Functions and	
	Equilibrium Equations	209
4.	DUALITY TRANSFORMATION RESTRICTED TO	
	FINITE BONDS	212
4.1.	Duality Transformations for Systems Satisfying	
	the Subgroup Property	212
4.2.	On the Definition of Phase Transitions	218
5.	ASANO CONTRACTIONS AND UNICITY OF STATE	222
5.1.	Systems Satisfying the Subgroup Property	223
5.2.	Systems Without the Subgroup Property	229
5.2.1.	Covering Sets Satisfying Asano Condition	230
5.2.2.	Systems with $ar{\mathfrak{G}}\supset \mathfrak{B}_{\boldsymbol{\omega}}$ or $\phi\in \mathfrak{f}^{ullet}(\mathfrak{L})$	232
5.2.3.	General Hard Core Lattice Systems	238
5.2.4.	Systems with $ar{\mathcal{B}} ot \supset \mathcal{B}_{m{\omega}}$	243
	APPENDIX	245
	PART III	
	ARBITRARY SPIN LATTICE SYSTEMS	
	111111111111111111111111111111111111111	
1.	GENERAL FRAMEWORK OF HIGHER SPIN SYSTEMS	250
1.1.	Definition of Arbitrary Spin Systems; Physical	
	Picture and Group Picture	250
1.2.	Thermodynamic and Equilibrium States of Finite	
	Systems	254

1.3.	Group Structure for Finite and Infinite	
	q - Component Systems	257
1.4.	Group Structure for General Spin Systems	262
2.	PHYSICAL IMPLICATONS OF THE GROUP STRUCTURE	265
2.1.	Low Temperature Expansion	266
2.2.	High Temperature Expansion	267
2.3.	Poisson Formulae	268
2.4.	Symmetry Properties	270
2.4.1.	Internal Symmetry Group ${\mathscr J}$	270
2.4.2.	Symmetric States and Symmetric Algebra	271
2.4.3.	Permutation Group	272
2.5.	Correlation Functions	275
2.6.	Relation between Physical Picture and Group	
	Picture	278
2.7.	Example : Generalized Potts Model	280
3.	SPIN 1 LATTICE SYSTEMS	283
3.1.	General Group Structure	283
3.2.	Action of the Permutation Group \mathcal{S}_3	286
3.3.	Symmetry Properties of the Hamiltonian	287
3.4.	Some Exact Phase Diagrams of Spin 1 Models	290
4.	THE DUALITY TRANSFORMATION	293
4.1.	Introduction	293
4.2.	Duality Transformation and Duality Relation	
	for the Partition Function	294
4.3.	General Method to Construct a Dual Lattice	296
4.4.	Examples	297
5.	ZEROES OF THE PARTITION FUNCTION	304
5.1.	General Formalism	305
5.2.	Applications to Various Spin 1 Models	306