CONTENTS

List of Contributors xi
Preface xiii

Alternating Chain Methods: A Survey

CLAUDÉ BERGE

1. Historical Background 1
2. The Maximum Matching Problem 2
3. The Maximum c-Matching Problem 4
4. The Maximum Stable Set Problem 8
References 13

The Average Height of Planted Plane Trees 15

N. G. DE BRUIJN, D. E. KNUTH, AND S. O. RICE

How to Number a Graph

SOLOMON W. GOLOMB

1. A Statement of the Problem 23
2. A Context for the Problem 24
3. A History of Subproblems 25
4. Necessary Conditions for Graceful Graphs 25
5. Classes of Graceful Graphs 29
6. Some General Questions 32
7. Euclidean Models and Complete Graphs 33
8. Numbered Graphs and Difference Sets 35
9. Summary of Unsolved Problems 36
10. Postscript 36

Evolution of the Path Number of a Graph: Covering and Packing in Graphs, II
FRANK HARARY AND ALLEN J. SCHWENK

1. History 39
2. Results on the Path Number 40
3. The Unrestricted Path Number 42
4. Unsolved Problems 44
 References 45

The Production of Graphs by Computer
B. R. HEAP

1. Introduction 47
2. Definitions and Terminology 49
3. Problems 50
4. Representation and Identification of Graphs in a Computer 50
5. Production of Simple Graphs 54
6. Production of Star Topologies 55
7. Production of Stars Having a Given Topology 58
 References 62

A Graph-Theoretic Programming Language
C. A. KING

1. Introduction 63
2. Design Considerations 64
3. FORTRAN Characteristics of GTPL 64
4. The Graph-Theoretical Statements of GTPL 66
5. Notes on Graph Theory Algorithms 69
6. Sample Programs 71
7. Concluding Remarks 74
 References 74
Contents

Entropy of Transformed Finite-State Automata and Associated Languages

W. Kuich

1. Introduction 77
2. Preliminaries 78
3. S Transformation of Automata 81
4. Entropy of S-Transformed Automata 82
 References 85

Counting Hexagonal and Triangular Polyominoes

W. F. Lunnon

1. Introduction 87
2. Bounding Hexagons 89
3. Symmetries 92
4. Counting Algorithm 94
5. Performance, Results, and Omissions 96
6. Asymptotic Behavior 96
 References 99

Symmetry of Cubical and General Polyominoes

W. F. Lunnon

1. Hypercubic Polyominoes and Their Symmetry 101
2. The Hyperoctahedral Group \(O_d \) 103
3. The Existence of Models 106
4. Cubical Counts 107
 References 108

Graph Coloring Algorithms

David W. Matula, George Marble, and Joel D. Isaacson

1. Introduction 109
2. Sequential Vertex Colorings 110
3. 5 Coloring Planar Graphs 117
4. Coloring Random Graphs 119
 References 122
Algebraic Isomorphism Invariants for Graphs of Automata

JOHN F. MEYER

1. Introduction 123
2. Finite Automata and Transition Graphs 124
3. Algebraic Isomorphism Invariants 128
4. Disconnected Graphs and Elementary Divisors 133
5. Permutation Graphs 137
6. Forests 142
7. Arbitrary Transition Graphs 145
 References 152

The Coding of Various Kinds of Unlabeled Trees

RONALD C. READ

1. Introduction: Coding in General 153
2. Definitions 155
3. Binary Codes for Planted Plane Trees 157
4. Binary Codes for Plane Rooted Trees 159
5. Binary Codes for Rooted Trees 160
6. The Decoding Algorithm 161
7. Binary Codes for Unrooted Trees 163
8. A Streamlined Algorithm for Coding Unrooted Trees 164
9. Some Properties of Tree Codes 166
10. Canonical Labelings 170
11. Valency Codes 172
12. Unrooted Trees Again 178
 References 181

A Graph-Theoretic Study of the Numerical Solution of Sparse Positive Definite Systems of Linear Equations

DONALD J. ROSE

1. Introduction 184
2. The Elimination Process 186
3. Triangulated Graphs 192
4. Optimal Ordering and Algorithms 202
 References 216

Intelligent Graphs: Networks of Finite Automata Capable of Solving Graph Problems

P. ROSENSTIEHL, J. R. FIKSEL, AND A. HOLLIGER

1. Introduction to Myopic Algorithms 219
2. Finite Graphs and Finite Automata 222
An Algorithm for a General Constrained Set Covering Problem
B. Roy

1. The General Constrained Set Covering Problem 268
2. Notation and Main Concepts 273
3. The Algorithm 278
 References 283

Tripartite Path Numbers
R. G. Stanton, L. O. James, and D. D. Cowan

1. Introduction 285
2. Elementary Results 286
3. Extensions of Previous Algorithms 289
4. The Exceptional Case 289
5. The Complete n-Partite Graph 293
 References 294

Non-Hamiltonian Planar Maps 295
W. T. Tutte

A Top-Down Algorithm for Constructing Nearly Optimal Lexicographic Trees
W. A. Walker and C. C. Gotlieb

1. Introduction 303
2. An Application 305
3. Basis of a Top-Down Algorithm 307
4. Algorithm for Nearly Optimal Lexicographic Trees 309
5. Choosing Parameters of the Algorithm 310
6. Time to Construct the Nearly Optimal Tree 312
7. Tests of the Algorithm 315
8. Summary 323
 References 323

Index 325