Contents

Prefac	e	ix
Chapte	er One Basic Concepts	1
1.1	Historical	1
1.2	Graphs	4
1.3	Vertices	5
1.4	Edges, Edge Sequences, and Connectedness	7
1.5	Planar and Nonplanar Graphs	10
1.6	Separable and Nonseparable Graphs	15
1.7	Directed Graphs	16
1.8	Trees	18
1.9	Cutsets	21
1.10	Introduction to Matrices—A Review	21
1.11	Vectors and Vector Spaces—A Review	24
1.12	Mod 2 and Boolean Arithmetic—A Review	25
1.13	Matrices Associated with Graphs	26
1.14	A Mnemonic Scheme for Algorithm Description	36
1.15	Summary of Definitions	37
	Exercises	42
Chapte	r Two Algorithms for Paths and Trees	49
2.1	Introduction	49
2.2	(P/S/D): Algorithm to Determine a Path—from an	
	Adjacency Matrix	50

Contents

2.3	(P/B/D): Algorithm Identifying a Path—from an	
2.3	Incidence Matrix	52
2.4	(PS-1/L/D): Dijkstra's Algorithm to Locate the Shortest	32
2.7	Path—Given a Distance Matrix of a Directed Graph	54
2.5	(PS-2/L/D): Algorithm to Identify a Shortest Path—from	J -
2.5	the Distance Matrix	57
2.6	(PL/L/D): Algorithm to Identify a Longest Path—from	31
2.0	the Distance Matrix	59
2.7	(T-1/B/U): Algorithm for Identifying a Spanning Tree—	37
	from an Incidence Matrix	62
2.8	(T-2/S/U): Algorithm to Identify a Spanning Tree—from	02
	an Adjacency Matrix	63
2.9	(T-3/S/D): Algorithm to Find a Spanning Tree—Given	05
	the Adjacency Matrix of a Directed Graph	65
2.10	(TSS-1/L/U): Kruskal's Algorithm for a Shortest	00
	Spanning Tree—Given a Distance Matrix for an Undirected	
	Graph	67
2.11	(TSS-2/L/U): Solin's Algorithm for the Shortest	
	Spanning Tree	71
2.12	(PS-3/L/D): The Revised Cascade Algorithm	73
Chapte	er Three Network Flows and Graph Traversing	<i>7</i> 9
3.1	Flows and Potentials	80
3.2	Flows and Capacity Constraints	86
3.3	The Transportation Problem	92
3.4	Feasible and Maximal Flows	96
3.5	Traversing a Graph	97
3.6	Unicursal Graphs and Euler Graphs	98
3.7	The Chinese Postman Problem	101
3.8	Coverings and Matchings	104
3.9	Hamiltonian Paths and Cycles	106
	Exercises	108
Chapte	r Four Algorithms for Circuits and Flow	111
4.1	(C/B/U): Algorithm to Obtain a Circuit Basis Matrix from	
	the Incidence Matrix	111
4.2	(CE/B/U): Algorithm Locating an Euler Circuit from the	
	Incidence Matrix	113
4.3	(CE/S/U): Algorithm Locating an Euler Circuit from an	
	Adjacency Matrix for an Undirected Graph	114
4.4	(CE-CPP/L/U): Algorithm Identifying the Minimum	
	Distance Euler Circuit	117

4.5	(CE/S/D): Algorithm Identifying an Euler Cycle from an	
	Adjacency Matrix	119
4.6	(FM-1/S/D): Algorithm Determining Maximal Flow in a	
	Capacitated Network	122
4.7	(FM-2/S/D): Algorithm Determining Maximal Flow in a	
	Capacitated Planar Network	124
4.8	(FM-3/S/D): Ford and Fulkerson Algorithm for Maximal	
4.0	Flow Given an Adjacency Matrix	127
4.9	(FO-S/D): Algorithm Identifying Least Cost Flow (or	
4 10	Optimal) in a Capacitated Network	129
4.10	(K/B/U): Algorithm to Obtain a Cutset Basis Matrix from	
4 11	an Incidence Matrix	133
4.11	(PH/S/D): Kaufmann's Algorithm to Identify a	
4 12	Hamiltonian Path—from an Adjacency Matrix	134
4.12	Algorithm for the Assignment Problem	137
Chante	er Five Activity Schedules	143
5.1		
5.2	2 Termine Diameter and Review Teeningue	143
5.3	- Elter in Flame Made Instery	154
5.5	Exercises	166
	LACICISCS	169
Chapte	r Six Construction	187
6.1	Highway Route Planning	187
	Earthwork Planning	193
6.3	Pier Construction Planning	197
6.4		210
	Exercises	217
a.		
-	r Seven Sequencing and Line Balancing	232
	Sequencing	232
7.2	Assembly Line Balancing	236
7.3	Disassembly Line Balancing	238
	Exercises	240
Chapte	r Eight Facilities Design	246
8.1	Block Plan Layout as a Planar Graph	247
8.2	Feasibility of a Facility Plan	250
8.3	Upper Bounds to Facilities Design Problem	262
8.4	Golf Course Design	266
8.5	Relocation of Machinery	266
8.6	Materials Handling System Installation	269
	Exercises	273
		213

v

Contents

Chanta	y Nine Flatrical Frame	283
-	r Nine Electrical Energy	
	Circuit Analysis and Design	283
	Printed Circuits	288
	Computer Utilities	291
	Television Relay Networks	296
9.5	Electrical Power Grids	298
	Exercises	301
Chapte	r Ten Pipeline Flows, Transportation and Traffic	309
10.1	Maximum Flow Through a Pipeline	310
10.2	Natural Gas Pipeline Systems	316
10.3	Commuter Traffic	324
10.4	Airline Scheduling	328
10.5	Fisherman's Problem	334
10.6	Railroad Schedules on a Crowded Line	336
	Exercises	338
Chapte	r Eleven Production Planning and Control	349
11.1	Parts Breakdown	349
11.2	Machining Process Optimization	354
	Worker Assignment	358
11.4	Machine Maintenance	364
11.5	Decision Trees	371
	Exercises	372
Chapte	r Twelve Organization	379
12.1	Classification Structure for Air Force Officers	379
12.2	Manufacturing Organization Structures	385
	An Example in Communications	389
	(r/S/U, d/S/U, c/S/U): Algorithm Identifying the Radius,	
	Diameter, and Center of an Undirected Graph	392
	Exercises	396
Appe	endix	403
Bibli	iography	415
Inde	r	417