		Page
Introduction		
Chapter 1	Basic Terminology	
§1.	Basic graph-theoretic terms	1
§ 2.	Groups acting on sets	4
Chapter 2	Edge-colourings of Graphs	
§1.	Introduction and definitions	9
§2.	A generalization of Vizing's theorem	14
§3.	Critical graphs	21
§4.	Constructions for critical graphs	26
§ 5.	Bounds on the size of critical graphs	37
§6.	Critical graphs of small order	43
§7.	Planar graphs	49
§8.	l-factorization of regular graphs of high degree	52
§ 9.	Applications to vertex-colourings	56
§ 10.	Applications to the reconstruction of latin squares	68
§11.	Concluding remarks	76
	References	81
Chapter 3	Symmetries in Graphs	
§1.	The automorphism group of a graph	88
§2.	Asymmetric graphs	92
§3.	Graphs with a given group	96
§4.	Vertex-transitive graphs	99
§ 5.	Vertex-transitive graphs of prime order	107
§ 6.	Auto-extensions	111
§ 7.	s-transitive cubic graphs	115
§8.	4-ultratransitive graphs	123
§ 9.	Hamilton cycles in Cayley graphs	133
§ 10.	Concluding remarks	141
	References	145

		Page
Chapter 4	Packing of Graphs	
§1.	Introduction and definitions	156
§2.	Packing n - 1 trees of different size into K_n	157
§3.	Packing two graphs of small size	163
§4.	Packing two graphs of order n having total size	
	at most 2n - 3	165
§ 5.	Packing a tree of order n with an (n, n-1) graph	170
§ 6.	Packing a tree of order n with an (n,n) graph	175
§7.	Packing two (n,n-1) graphs	180
§8.	Packing two graphs of order n having total size	
	at most 2n - 2	188
	References	194
Chapter 5	Computational Complexity of Graph Properties	
§1.	Introduction and definitions	196
§2.	Some elusive properties; the simple strategy ψ_{0}	200
§3.	Some non-elusive properties	205
§ 4.	The diagram of a non-elusive property	209
§ 5.	The odd-even balanced condition	213
§ 6.	The Aanderaa-Rosenberg Conjecture	218
§7.	A counterexample to the Rivest-Vuillemin Conjecture	220
§8.	A lower bound for the computational complexity of	
	graph properties	223
	References	226
Index of sub	jects	228
Index of notation		230