Contents

Introduction vii

PA	RT	O	NF

1 Basic concepts from graph theory	- 3
------------------------------------	-----

- 1.1 Graphs; points, edges, paths, circuits, connectivity 3
- 1.2 Trees, forests, cut sets 11
- 1.3 Directed graphs 16
- 1.4 Graph theory algorithms I: Matrix representations of a graph and related data structures 20
- 1.5 Greedy algorithms I: Graphs 31

2	Planar	aranhe	and	duality	60
.,	i ianai	gravus	anu	uuaniv	1,17

- 3.1 Duality and 2-isomorphism 69
- 3.2 Planar graphs 76
- 3.3 2-Connected graphs 82
- 3.4 Graph theory algorithms II: DFS—BFS techniques 86
- 5 The theorems of König and Menger 107
- 5.1 Bipartite graphs, 1-factors, König's theorem 107
- 5.2 Flows in networks, Menger's theorem 113
- 5.3 Term rank, algebraic dependence 120
- 5.4 Graph theory algorithms III:

 NP-problems 123

- 2 Applications 37
 2.1 Kirchhoff-equations; the basic problem of network analysis 37
 2.2 Unique solvability of resistive
- 2.2 Unique solvability of resistive networks 452.3 Capacitors, inductors; state
- 2.4 How to check the conditions 542.5 The topological formulae of

equations 49

2.6 How to brace a square grid using diagonal rods and/or cables 59

Kirchhoff and Maxwell

- 4 Applications 924.1 Duality in electric network theory I:
- The classical results 92
 4.2 Maxwell-Cremona diagrams and the "reciprocity" of planar frameworks 97
- 6 Applications 131
 6.1 Unique solvability of RLC networks containing negative resistors 131
 6.2 Unique solvability of networks con-
- taining ideal transformers or gyrators 132 6.3 Rigidity of trusses I: Graph model, the definition of rigidity 141

PART TWO

7	Basic concepts in matroid theory 151
7.1	Matroids; independence, base,
	rank 151
7.2	Circuits, duality, cut sets 157
7.3	Minors, direct sum, connectivity 163
	Greedy algorithms II: Matroids 167
0	
9	Algebraic and geometric
	representation of matroids 185
9.1	Representation over various
	fields 185
	Geometric representation 191
9.3	The closed sets of a matroid 202
11	The sum of matroids I 222
	The concept of the sum 222
	2 Algebraic and geometric meaning
• • • •	of the sum 225
11 '	
11	3 Applications in graph theory 229
13	The sum of matroids II 247
13.	Matroid theory algorithms I:
	Partition and intersection 247
13.2	2 Important minimax theorems 253
	3 Submodular functions 257
15	Matroids induced by graphs 273

15.1 Transversal matroids 27315.2 Matroids induced by bipartite

15.3 Matroids induced by directed

graphs 279

graphs 282

- 8 Applications 171
 8.1 The concept of multiports and their various descriptions 171
 8.2 Rigidity of trusses II: Various tie-down structures 179
- 10 Applications 206
 10.1 Duality in electric network theory II: Inverse, dual and adjoint multiports; the full symmetry 206
- 12 Applications 23312.1 The existence of hybrid immittance descriptions of multiports 233

10.2 How to brace a one-story building 215

- 12.2 Unique solvability of linear active networks I: Necessary conditions 23712.3 Rigidity of trusses III: Laman's
- theorem 242

14 Applications 260

14.1 Unique solvability of linear active networks II: Necessary and sufficient conditions for "general" networks 260
14.2 Interconnection of multiports 263

14.3 Reconstruction of polyhedra from projected images 267

- 16 Applications 28716.1 On the data structure of network
 - analysis programmes 287
 16.2 "Unrealizability" of certain multiports 289

17	Some recent results in matroid
	theory 293
17.1	Matroid theory algorithms II:
	Oracles 293
17.2	The characterization of regular
	matroids 297
17.3	The 2-polymatroid matching
	problem 301
17.4	Oriented matroids 304

Appendix 1 Some important results in

Appendix 2 List of the Boxes 318

Appendix 3 List of the Algorithms 32

Appendix 4 Solutions to the Exercises

Bibliography 511 Subject index 527

18	Applications 307	
18.1	Unique solvability of linear ac	ctive
	networks III: Sufficient	
	conditions 307	
18.2	Rigidity of trusses IV: How m	any
	joints must be pinned down?	310

18.3 Tensegrity frameworks 312

chronological order 317

and Problems 321

20