CONTENTS

CHAPTER 0 WHY YOU SHOULD READ THIS BOOK
WHAT ARE DISCRETE STRUCTURES? 1
HOW CAN WE USE DISCRETE STRUCTURES? 3
INFINITE LOOP PROBLEM 3
SCHOOL BUS ROUTE PROBLEM 4
TRAFFIC FLOW PROBLEM 5
MAXIMIZING PROFITS 6
COMPUTER COMMUNICATIONS NETWORK PROBLEM 6
COMPILER CORRECTNESS PROBLEM 7
LOGIC DESIGN PROBLEM 8
PRINTED CIRCUIT BOARD PROBLEM 8
INSTANT INSANITY PROBLEM 9
MARATHON RUNNING ROUTE 9
WHY STUDY DISCRETE STRUCTURES? 10
EXERCISES 10
CHAPTER 1 FORMAL SYSTEMS 13
BASIC ASSUMPTIONS 13
SETS AND ELEMENTS 13
SET NOTATION 14
SET DEFINITION 15
SUBSETS 16
POWER SETS 18
EQUALITY OF SETS 18
VENN DIAGRAMS 19
FORMAL SYSTEMS 20
TRUTH 22
PROPOSITIONS 23
COMBINING PROPOSITIONS 24
NEGATION 26
NEGATING COMPOUNDS 30
TESTS FOR LOGICAL EQUALITY 33

IMPLICATION 34 ARGUMENTS AND PROOF CONSTRUCTION 37 INDUCTION AND PROOF CONSTRUCTION 41 EXERCISES 45
CHAPTER 2 FUNCTIONS AND RELATIONS 53
CARTESIAN PRODUCTS 53
RELATIONS 55
PROPERTIES OF BINARY RELATIONS 56
EQUIVALENCE RELATIONS 57
EXAMPLES OF EQUIVALENCE CLASSES 59
REFLEXIVE AND SYMMETRIC CLOSURES 61
A SPECIAL REFLEXIVE RELATION 64
TRANSITIVE CLOSURE 64
EXAMPLES OF TRANSITIVE CLOSURE 67
OPERATIONS 68
OPERATIONS ON SETS 68
THE POWER SET 70
COMBINING OPERATIONS 71
ASSOCIATIVITY 73
COMMUTATIVITY 73
COMBINING UNARY AND BINARY OPERATIONS 74
PARTITIONS AND COVERINGS 74
FUNCTIONS 75
TYPES OF FUNCTIONS 77
EXAMPLES OF FUNCTIONS 79
THE IDENTITY FUNCTION 81
PRESERVING OPERATIONS: MORPHISMS 81
TYPES OF MORPHISMS 84
EXERCISES 85
CHAPTER 3 BOOLEAN ALGEBRAS 91

BOOLEAN ALGEBRAS 91
EXAMPLES OF BOOLEAN ALGEBRAS 93
PROPERTIES OF THE POWER SET 95
BOOLEAN VARIABLES AND FUNCTIONS 96
FUNCTIONAL COMPLETENESS REVISITED 98
A TEST FOR FUNCTIONAL COMPLETENESS 98

			,
х	1	1	l

APPLICATION OF FUNCTIONAL COMPL	ETENESS
TO LOGIC DESIGN 101	
EXAMPLES OF LOGIC DESIGN 102	
GATES AND FUNCTIONAL NOTATION	103
ADDERS 104	
CANONICAL SUMS AND PRODUCTS	107
USING CANONICAL REPRESENTATIONS	110
EXERCISES 112	

CHAPTER 4 BOOLEAN ALGEBRA AND LOGIC DESIGN 115

COVERINGS AND IMPLICANTS 115 KARNAUGH MAPS 117 KARNAUGH MAPS FOR FIVE OR SIX VARIABLES 123 DON'T-CARES 126 OBTAINING THE POS 130 EXAMPLE OF USE OF KARNAUGH MAPS 132 QUINE-McCLUSKEY METHOD SEQUENTIAL LOGIC 140 STATE TRANSITION 144 HOW TO FIND AN OPTIMAL REALIZATION 148 EXERCISES 149

CHAPTER 5 LATTICES AND THEIR APPLICATIONS 153

UPPER AND LOWER BOUNDS 155 LATTICES 157 PROPERTIES OF LATTICES 158 DUALITY 159 LATTICES AS BOOLEAN ALGEBRAS 161 COMPLEMENTIVE LATTICES 162 DISTRIBUTIVE LATTICES 163 STATE REDUCTION 166 MACHINE DECOMPOSITION 172 ORDERING PARTITIONS 173 GENERATING SP PARTITIONS 175 FORMING A SERIAL DECOMPOSITION 179 PARALLEL DECOMPOSITION 181

153

ORDERING SETS

STATE ASSIGNMENT 182 EXERCISES 183

CHAPTER 6 CARDINALITY AND COUNTABILITY 189

CARDINALITY OF A SET 189

INFINITE SETS 191

TRANSFINITE CARDINAL NUMBERS 195

REAL NUMBERS 196

COMBINING FINITE SETS 198

SAMPLING 199

PERMUTATIONS 202

CIRCULAR ARRANGEMENTS 204

PERMUTATIONS OF NONDISTINCT OBJECTS 205

UNORDERED SELECTIONS 206

SELECTION WITH REPETITION 209

ORDERED PARTITIONS 210

BINOMIAL COEFFICIENTS 211

THE PRINCIPLE OF INCLUSION / EXCLUSION 213

RECURRENCE RELATIONS 219

EXERCISES 224

CHAPTER 7 GRAPHS AND THEIR USE IN COMPUTING 229

WHAT IS A GRAPH?

SUBGRAPHS 232

RECONSTRUCTING A GRAPH FROM ITS SUBGRAPHS 235

WALKS AROUND GRAPHS 236

CONNECTEDNESS 237

DEGREE OF A POINT 238

REGULAR GRAPHS AND COMPLETE GRAPHS 239

229

RAMSEY NUMBERS 241

BIPARTITE GRAPHS 242

TREES 244

ROOTED TREES 248

PLANAR GRAPHS 249

TRAVERSABILITY: EULERIAN GRAPHS 252

HAMILTONIAN GRAPHS 254

COLORING A GRAPH 255

REPRESENTING GRAPHS AS MATRICES 259 THE PATH MATRIX AS TRANSITIVE CLOSURE 260 DIRECTED GRAPHS 261 APPLICATIONS OF GRAPHS 263 MINIMAL COST SPANNING TREES 263 CRITICAL PATHS 265 SHORTEST PATHS 269 MAXIMAL FLOW PROBLEMS 272 EXERCISES 278

CHAPTER 8 INTRODUCTION TO FORMAL LANGUAGES 285

NATURAL AND FORMAL LANGUAGES 285 GENERATIVE GRAMMARS 287 FOUR CLASSES OF GRAMMARS 289 RECOGNIZERS 291 REGULAR GRAMMARS REVISITED 292 FINITE AUTOMATA 298 DETERMINISTIC AND NONDETERMINISTIC FINITE STATE ACCEPTERS 300 CONVERTING AN NESA TO A DESA 304 APPLICATIONS OF FINITE STATE MACHINES 308 PUSHDOWN AUTOMATA 310 DERIVATION TREES 313 AMBIGUITY 315 EXERCISES 316

CHAPTER 9 COMPUTABILITY 321

TURING MACHINES 326
UNIVERSAL TURING MACHINES 335
THE HALTING PROBLEM 338
RECURSIVE FUNCTIONS 339
MARKOV ALGORITHMS 344
WHEN IS SOMETHING COMPUTABLE? 346
EXERCISES 347

INDEX 349