Contents

1	Intr	oduction and basic concepts	1
	1.1	An assortment of problems	2
	1.2	Numbers and sets: notation	7
	1.3	Mathematical induction and other proofs	16
	1.4	Functions	25
	1.5	Relations	32
	1.6	Equivalences	36
	1.7	Ordered sets	40
2	Combinatorial counting		
	2.1	Functions and subsets	47
	2.2	Permutations and factorials	52
	2.3	Binomial coefficients	55
	2.4	Estimates: an introduction	66
		Estimates: the factorial function	73
	2.6	Estimates: binomial coefficients	81
	2.7	Inclusion-exclusion principle	86
	2.8	The hatcheck lady & co.	91
3	Gra	phs: an introduction	97
	3.1	The notion of a graph; isomorphism	97
	3.2	Subgraphs, components, adjacency matrix	106
	3.3	Graph score	112
	3.4	Eulerian graphs	117
	3.5	An algorithm for an Eulerian tour	123
	3.6	Eulerian directed graphs	127
	3.7	2-connectivity	132
4	Trees		
	4.1	Definition and characterizations of trees	138
	4.2	Isomorphism of trees	144
	4.3	Spanning trees of a graph	153
	4.4	The minimum spanning tree problem	155
	4.5	Jarník's algorithm and Borůvka's algorithm	16:

xiv

5	Drawing graphs in the plane	167
	5.1 Drawing in the plane and on other surfaces	167
	5.2 Cycles in planar graphs	174
	5.3 Euler's formula	181
	5.4 Coloring maps: the four-color problem	191
6	Double-counting	202
	6.1 Parity arguments	202
	6.2 Sperner's theorem on independent systems	211
	6.3 A result in extremal graph theory	218
7	The number of spanning trees	223
	7.1 The result	223
	7.2 A proof via score	224
	7.3 A proof with vertebrates	226
	7.4 A proof using the Prüfer code	229
	7.5 A proof working with determinants	231
8	Finite projective planes	240
	8.1 Definition and basic properties	240
	8.2 Existence of finite projective planes	250
	8.3 Orthogonal Latin squares	255
	8.4 Combinatorial applications	258
9	Probability and probabilistic proofs	262
	9.1 Proofs by counting	262
	9.2 Finite probability spaces	269
	9.3 Random variables and their expectation	279
	9.4 Several applications	285
10	Generating functions	294
	10.1 Combinatorial applications of polynomials	294
	10.2 Calculation with power series	298
	10.3 Fibonacci numbers and the golden section	309
	10.4 Binary trees	317
	10.5 On rolling the dice	322
	10.6 Random walk	323
	10.7 Integer partitions	326
11	Applications of linear algebra	333
	11.1 Block designs	333

11.2 Fisher's inequality

338

	Contents xv
11.3 Covering by complete bipartite graphs	342
11.4 Cycle space of a graph	345
11.5 Circulations and cuts: cycle space revisited	349
11.6 Probabilistic checking	353
Appendix: Prerequisites from algebra	363
Bibliography	371
Hints to selected exercises	377
Index	399