CONTENTS

CHAPTER 1. BINOMIAL EQUATIONS

1.	Functions and equations	1
2.	Illustrations of use of factorization of a function	2
3.	Complex numbers in trigonometric form	5
4.	Multiplication and division of complex numbers in trig-	
	onometric form	7
5.	The cube roots of unity in trigonometric form	9
6.	De Moivre's theorem	11
7.	The fifth roots of unity	12
8.	The <i>n</i> th roots of unity	13
9.	The nth roots of an arbitrary non-zero complex number	15
	Relation between the cube roots of a complex number	
	and the cube roots of the conjugate complex number	18
	CHAPTER 2. CUBIC AND QUARTIC EQUATIONS	
1.	The general cubic equation and its reduced cubic	
	equation	21
2.	Algebraic solution of the reduced cubic equation	22
3.	Trigonometric solution of the cubic equation with real	
	roots	2 5
4.	Discriminant of the cubic equation	2 9
	Algebraic solution of the quartic equation	32
	Discriminant of the quartic equation	36
	CHAPTER 3. GENERAL THEOREMS ON ROOTS OF	
	POLYNOMIAL EQUATIONS	
1	Integral roots of polynomial equations whose coefficients	
1.	are integers. Synthetic substitution	43
9	The factor theorem and the remainder theorem. Fac-	10
4.	tored form of a polynomial	48
2	Upper and lower bounds for real roots of a real poly-	
u.	nomial equation	55
	nomiai equation	-
	711	

4.	Rational roots of a polynomial equation whose coefficients are integers	61
5.	Multiple roots	67
	Chapter 4. Isolation and Computation of Real Roots of Real Polynomial Equations	
1.	Isolation of real roots by Sturm's theorem illustrated	82
2.	Sturm's theorem	86
	Descartes' rule of signs	93
4.	Horner's method	95
	Chapter 5. Introduction to Determinants	
1.	Systems of linear equations and determinants	106
2.	Solution of certain systems of numerical equations in	
_	three unknowns	106
3.	Systems of three linear equations in three unknowns.	
	Determinants of order three. Determinants of order two. Matrices	119
	two. Manifees	113
	Chapter 6. Determinants	
1.	Determinants of order four	128
	Determinants of order five. Determinants of order n First and second fundamental properties of determinants	132
	nants of order n	134
	Expansion of determinants of order n	147
	Other properties of determinants of order n	153
6.	Laplace's development of a determinant of order n .	100
	Multiplication of determinants of order n	162
	Chapter 7. Systems of Linear Equations and Determinants	
1.	Systems of n linear equations in n unknowns	180
	Systems of q linear equations in n unknowns	187
3.	Linear homogeneous equations in n unknowns	211
4.	Geometrical interpretation if the number of variables is	
	two or three	226

CHAPTER 8. COMPLEX NUMBERS AND THE FUNDAMENTAL THEOREM OF ALGEBRA

 Complex numbers The fundamental theorem of algebra 	236 239
Chapter 9. Symmetric Functions	
1. Relation between the coefficients and the roots of a poly-	
nomial equation	241
2. The fundamental theorem on symmetric functions	2 46
3. Resultants. Discriminants	258
Bibliography	
Answers	
Index	