Contents | 1. | Introduction to Linear Algebra | 1 | |----|---|-----| | | Some problems which lead to linear algebra Number systems and mathematical induction | | | 2. | Vector Spaces and Systems of Linear Equations | 16 | | | Vector spaces 16 Subspaces and linear dependence 26 The concepts of basis and dimension 34 Row equivalence of matrices 38 Some general theorems about finitely generated vector spaces 48 Systems of linear equations 53 Systems of homogeneous equations 62 Linear manifolds 69 | | | 3. | Linear Transformations and Matrices | 75 | | | 11. Linear transformations 75 12. Addition and multiplication of matrices 88 13. Linear transformations and matrices 99 | | | 4. | Vector Spaces with an Inner Product | 109 | | | 14. The concept of symmetry 10915. Inner products 119 | | X CONTENTS | 5. | Determinants | 132 | |-----|---|-----| | | 16. Definition of determinants 132 17. Existence and uniqueness of determinants 140 18. The multiplication theorem for determinants 146 19. Further properties of determinants 150 | | | | 13. I dittief properties of determinants 130 | | | 6. | Polynomials and Complex Numbers | 163 | | | 20. Polynomials 16321. Complex numbers 176 | | | 7. | The Theory of a Single Linear Transformation | 184 | | | 22. Basic concepts 184 23. Invariant subspaces 193 24. The triangular form theorem 201 25. The rational and Jordan canonical forms 216 | | | 8. | Dual Vector Spaces and Multilinear Algebra | 228 | | | 26. Quotient spaces and dual vector spaces 228 27. Bilinear forms and duality 236 28. Direct sums and tensor products 243 29. A proof of the elementary divisor theorem 260 | | | 9. | Orthogonal and Unitary Transformations | 266 | | | 30. The structure of orthogonal transformations 266 31. The principal axis theorem 271 32. Unitary transformations and the spectral theorem 278 | | | 10. | Some Applications of Linear Algebra | 289 | | | 33. Finite symmetry groups in three dimensions 289 34. Application to differential equations 298 35. Sums of squares and Hurwitz's theorem 306 | | | | Bibliography (with Notes) 315 | | | | Solutions of Selected Exercises 317 | | | | Symbols (including Greek Letters) 332 | | | | Index 334 | |