Contents

6.3

6.5

Chapter 1. Introduction 1 1.1 Motivating applications 1 1.2 Discrete orthogonal polynomials 8 1.3 Assumptions 10 1.4 Goals and methodology 11 1.5 Outline of the rest of the book 22
1.2 Discrete orthogonal polynomials81.3 Assumptions101.4 Goals and methodology11
1.3 Assumptions 10 1.4 Goals and methodology 11
1.4 Goals and methodology 11
1.5 Outline of the rest of the book
1.6 Research background 23
Chapter 2. Asymptotics of General Discrete Orthogonal Polynomials in the Complex Plane 25
2.1 The equilibrium energy problem 25
2.2 Elements of hyperelliptic function theory 31
2.3 Results on asymptotics of discrete orthogonal polynomials 33
2.4 Equilibrium measures for some classical discrete orthogonal polynomials 41
Chapter 3. Applications 49
3.1 Discrete orthogonal polynomial ensembles and their particle statistics 49
3.2 Dual ensembles and hole statistics 51
3.3 Results on asymptotic universality for general weights 52
3.4 Random rhombus tilings of a hexagon 57
3.5 The continuum limit of the Toda lattice 60
Chapter 4. An Equivalent Riemann-Hilbert Problem 67
4.1 Choice of Δ : the transformation from $\mathbf{P}(z; N, k)$ to $\mathbf{Q}(z; N, k)$
4.2 Removal of poles in favor of discontinuities along contours: the transformation
from $\mathbf{Q}(z; N, k)$ to $\mathbf{R}(z)$
4.3 Use of the equilibrium measure: the transformation from $\mathbf{R}(z)$ to $\mathbf{S}(z)$
4.4 Steepest descent: the transformation from $\mathbf{S}(z)$ to $\mathbf{X}(z)$
4.5 Properties of $\mathbf{X}(z)$
Chapter 5. Asymptotic Analysis 87
5.1 Construction of a global parametrix for $\mathbf{X}(z)$
5.2 Error estimation 99
Chapter 6. Discrete Orthogonal Polynomials: Proofs of Theorems Stated in §2.3
6.1 Asymptotic analysis of $P(z; N, k)$ for $z \in \mathbb{C} \setminus [a, b]$
6.2 Asymptotic behavior of $\pi_{N,k}(z)$ for z near a void of $[a,b]$: the proof of Theorem 2.9

108

110

112

115

115

Asymptotic behavior of $\pi_{N,k}(z)$ for z near a saturated region of [a,b]

Asymptotic behavior of $\pi_{N,k}(z)$ for z near a band

7.1 Relation between correlation functions of dual ensembles

Chapter 7. Universality: Proofs of Theorems Stated in §3.3

Asymptotic behavior of $\pi_{N,k}(z)$ for z near a band edge

7.2 Exact formulae for $K_{N,k}(x,y)$	118
7.3 Asymptotic formulae for $K_{N,k}(x,y)$ and universality	
1. I. J.	124
Appendix A. The Explicit Solution of Riemann-Hilbert Problem 5.1	135
A.1 Steps for making the jump matrix piecewise-constant: the transformation from $\dot{\mathbf{X}}(z)$ to $\mathbf{Y}^{\sharp}(z)$	135
A.2 Construction of $\mathbf{Y}^{\sharp}(z)$ using hyperelliptic function theory	137
A.3 The matrix $\dot{\mathbf{X}}(z)$ and its properties	141
() to properties	141
Appendix B. Construction of the Hahn Equilibrium Measure: the Proof of Theorem 2.17	145
B.1 General strategy: the one-band ansatz	145
B.2 The void-band-void configuration	146
B.3 The saturated-band-void configuration	149
B.4 The void-band-saturated configuration	
B.5 The saturated-band-saturated configuration	150
2.6 The saturated band-saturated computation	151
Appendix C. List of Important Symbols	153
	155
Bibliography	160
	163
Index	
muex	167

CONTENTS

vi