CONTENTS

	Preface	vii
	Notes to the Reader	хi
PART I	Riemannian Geometry	1
CHAPTER 1	Affine Differential Geometry	1
1.1		2
1.2	Vector fields	3
1.3	Differential forms	5
1.4	Maps	7
1.5		9
1.6	<u> </u>	14
1.7		23
1.8		31
1.9	The Cartan-Ambrose-Hicks Theorem	42
CHAPTER 2	Riemannian Curvature	45
2.1	The Levi-Cività connection	46
2.2	Sectional curvature	52
2.3	Isometries and curvature	57
2.4	Models for spaces of constant curvature .	62
2.5	The 2-dimensional space forms	74
2.6	Finite rotation groups	83
2.7	Homogeneous space forms	88
2.8	Appendix: The metric space structure of a	
	riemannian manifold	91
PART II	The Euclidean Space Form Problem	97
CHAPTER 3		98
3.1		98
3.2	The Bieberbach Theorems on crystallographic	
	groups	100
3.3	Application to euclidean space forms	105
	Questions of holonomy	107
3.5	Three dimensional euclidean space forms .	111
3.6	Three attacks on the classification problem for	
	flat compact manifolds	124
3.7	Flat homogeneous pseudo-riemannian manifolds	131

xiv Contents

PART III	The Spherical Space Form Problem	137
CHAPTER 4	Representations of Finite Groups	138
4.1	Basic definitions	138
4.2	The Frobenius-Schur relations	139
4.3	Frobenius reciprocity and the group algebra .	141
4.4	Divisibility	145
4.5	Tensor products and dual representations	147
4.6	Two lemmas on representations over algebraically	
	non-closed fields	150
4.7	Unitary and orthogonal representations	151
CHAPTER 5	Vincent's Work on the Spherical Space Form	
	Problem	154
5.1	Vincent's program	154
5.2	Preliminaries on p-groups	156
5.3	Necessary conditions on fixed point free groups .	159
5.4	Classification of the simplest type of fixed point	
	free groups	162
5.5	Representations of finite groups in which every	
	Sylow subgroup is cyclic	165
5.6	A partial solution to the spherical space form	
	problem	171
CHAPTER 6	The Classification of Fixed Point Free Groups .	172
6.1	Zassenhaus' work on solvable groups with cyclic	
	odd Sylow subgroups	173
6.2	The binary icosahedral group	181
6.3	Non-solvable fixed point free groups	195
		1).
CHAPTER 7	The Solution to the Spherical Space Form	
~ .	Problem	198
7.1	Representations of binary polyhedral groups	198
7.2	Fixed point free complex representations	203
7.3	The action of automorphisms on representations.	211
7.4	The classification of spherical space forms	218
7.5	Spherical space forms of low dimension	224
7.6	Clifford translations	227
PART IV	Space Form Problems on Symmetric Spaces .	231
CHAPTER 8	Riemannian Symmetric Spaces	231
8.1	Lie formulation of locally symmetric spaces	232
8.2	Structure of orthogonal involutive Lie algebras .	234
8.3	Globally symmetric spaces and orthogonal involu-	254
J.2	tive Lie algebras	240
8.4	Curvature	240

	CONTENTS	xv
8.5	Cohomology	. 247
8.6	Cartan subalgebras, rank and maximal tori	. 252
8.7	Hermitian symmetric spaces	. 257
8.8	The full group of isometries	. 263
8.9	Extended Schläfli-Dynkin diagrams	. 264
8.10	Subgroups of maximal rank	. 275
8.11	The classification of symmetric spaces .	. 286
8.12	Two point homogeneous spaces.	. 293
8.13	Appendix: Manifolds with irreducible linear	
	isotropy group	. 300
CHAPTER 9	Space Forms of Irreducible Symmetric	
CHAPIER 3	Spaces	. 303
9.1	Feasibility of space form problems	. 304
9.2	Grassmann manifolds as symmetric spaces.	. 306
9.3	Grassmann manifolds of even dimension .	. 307
9.4	Grassmann manifolds of odd dimension .	. 314
9.5	Symmetric spaces of positive characteristic.	. 319
9.6	An isolated manifold	. 325
CHAPTER 10	Locally Symmetric Spaces of Non-negative	
CHAPIER IU	Curvature	. 328
10.1	The structure theorems	. 329
10.1	Application of the structure theorems .	. 333
10.2	• •	
part V	Space Form Problems on Indefinite Metric	227
	Manifolds	. 337
CHAPTER 11	Spaces of Constant Curvature	. 337
11.1	The classification of finite space forms .	. 338
11.2	The geometry of pseudo-spherical space forms	. 341
11.3	Homogeneous finite space forms	. 347
11.4	The lattice space forms	. 354
11.5	A wild Lorentz signature	. 366
11.6	The classification for homogeneous manifolds o	I 270
	constant curvature	. 370
CHAPTER 12	Locally Isotropic Manifolds	. 374
12.1	Deductive Lie groups	. 374
12.2	Examples of locally isotropic manifolds .	. 380
12.3	Structure of locally isotropic spaces	. 385
12.4	A partial classification of complete locally	20-
2-20	isotropic manifolds	. 389
	•	207
	References · · · · · ·	. 396
		403
	Index	. 403