CONTENTS

	TELIMITATIES
Chapter 0	Notations and Prerequisites Numbers 1 □ Sets and maps 1 □ Equivalence relations 3
Chapter 1	Spaces and Continuous Maps Introduction 5 □ Continuity 5 □ Homeomorphism 7 □ Neighborhoods, open and closed sets 11 □ Compactness 15
Chapter 2	Abelian Groups Introduction 21 ☐ Definitions 21 ☐ Direct sums 23 ☐ Exact sequences 27 ☐ Free abelian groups 31
PART 1 INTRODUCTION TO HOMOTOPY THEORY	
Chapter 3	Connected and Disconnected Spaces Introduction 41 ☐ Connectedness 41 ☐ Path-connectedness 43 ☐ Local path-connectedness 45
Chapter 4	More about Connection Introduction 49 \square The group $H^0(X)$ 49 \square The set $\pi_0(X)$ 50 \square The group $H_0(X)$ 53
Chapter 5	Definition of Homotopy Introduction 57 \square Definition of homotopy 57 \square Homotopy equivalence 60 \square Homotopy sets; the groups $H^1(X)$ 61
Chapter 6	A Study of a Circle Introduction 65 \square Lifting maps from S^1 up to R 65 \square The degree of a map 68 \square Applications 70
Chapter 7	Lifting and Extension Problems Introduction 74 The lifting problem 75 The extension problem 79
Chapter 8	Calculations Introduction 84 ☐ The Mayer-Vietoris theorem 84 ☐ First calculations 87 ☐ Graphs 90 ☐ Products 91

168

PART 2 THE DUALITY THEOREM	
Chapter 9 Eilenberg's Separation Criterion Introduction 99 □ Complementary components 99 □ Separation of points by compact plane sets 100	
Chapter 10 The Duality Map Introduction 104 ☐ Construction of the duality map 104 ☐ Proof of injectivity 106	
Chapter 11 Proof of the Duality Theorem Introduction 111 ☐ An extension theorem 113 ☐ Naturality 116 ☐ Proof in some special cases 116 ☐ End of the proof 119	
Chapter 12 Remarks on the Proof Introduction 122 □ The extended plane 122 □ Reformulation of preceding chapters 124 □ The Hopf map 125	
PART 3 FURTHER RESULTS IN THE TOPOLOGY OF PLANE SETS	
Chapter 13 The Jordan Curve Theorem Introduction 133 ☐ Theta curves 133 ☐ First alternative proof (after Dieudonné) 135 ☐ Point sets in R ⁿ and S ⁿ 137 ☐ Second alternative proof (after Doyle) 139 ☐ Invariance of (plane) domains 140	
Chapter 14 Further Duality Properties Introduction 143 \square The group $H_1(X)$ 143 \square Properties of $H_1(X)$ 146 \square Duality 147 \square Plane domains 148	
Chapter 15 Geometric Integration Theory Introduction 153 ☐ Line integrals in R² 153 ☐ Green's theorem 154 ☐ Reformulation in terms of homology 157 ☐ The three-dimensional case 160 ☐ The complex case 162	
Index of Terms 165	
Index of Notation	