CONTENTS PREFACE ACKNOWLEDGMENTS | 1. | Theory of Open Coverings | | |----|---|--------------------------------------| | | Complexes Normality of Open Coverings Extension of Coverings and Extensors Identification Spaces and Absolute Retracts Metrization Theorems Inverse Limits and Compact Spaces Totally Normal Spaces | 2
6
21
28
30
37
42 | | 2. | Dimension of Normal Spaces | | | | Dimension Functions and 0-Dimensional Spaces Covering Dimension of Normal Spaces Large Inductive Dimension of Normal Spaces Subset Theorem and Local Dimension | 44
47
56
59 | ix хi vi Contents | 3. | Dimension of Metric Spaces | | | | | |----|---|---------------------------------|--|--|--| | | Fundamental Theorems for the Dimension of Metric Spaces Topics on Nagata's Metric and Infinite Dimensional Spaces Sequences of Coverings Defining Dimension Open Mappings and Dimension | 72
83
90
94 | | | | | 4. | Gaps between Dimension Functions | | | | | | | 16. A Compact Space Missing the Sum Theorem for ind and Ind 17. A Normal Space with ind = n Having Large dim 18. Compact Spaces with dim = n Having Large ind and Ind 19. A Normal Space with ind = 0, dim = 1, Ind = 2 | 99
102
107
114 | | | | | 5. | Dimension-Changing Closed Mappings | | | | | | | Relative Dimension Dimension-Lowering Closed Mappings Directed Families of Closed Coverings Dimension-Raising Closed Mappings for Nonmetric Spaces Dimension-Raising Closed Mappings for Metric Spaces | 124
129
130
141
143 | | | | | 6. | Product Theorem and Expansion Theorem | | | | | | | 25. Product Theorem for Ind26. Product Theorem for dim27. Expansion into Inverse Limits | 148
150
154 | | | | | 7. | Metric-Dependent Dimension Functions | | | | | | | 28. Dimension of the Complement of a Disjoint Sum 29. Relations between Metric-Dependent Dimension Functions 30. Spaces with d₂ = [n/2] and dim ≥ n-1 31. Spaces with μ dim = [n/2] and dim ≥ n-1 32. Spaces Illustrating the Dependence of d₂, d₃, and μ dim on the Metric | 165
172
180
183 | | | | | | 33. A Space with $d_2 = 2$, $\mu \dim = 3$, $\dim = 4$ | 185
190 | | | | **Contents** vii | ADDCHUM COMUNICIOZICAI DINICIONION INCOL | Appendix | Cohomological | Dimension | Theory | |--|----------|---------------|-----------|--------| |--|----------|---------------|-----------|--------| ## Yukihiro Kodama | 34. | Preliminaries: Čech Cohomology Group | 196 | |------------|--|-----| | 35. | Cohomological Dimension | 199 | | 36. | A Characteristic Property of $d(X:G)$ | 201 | | 37. | D(X:G) and $d(X:G)$ | 208 | | 38. | Sum Theorem | 214 | | 39. | Bockstein's Theorem I | 219 | | 40. | Cantor Manifolds | 225 | | 41. | Bockstein's Theorem II | 231 | | 42. | Products of Compact Metric Spaces and Paracompact Spaces | 236 | | 43. | Subset Theorem and Product Theorem | 241 | | References | | | | Author | Index | 251 | | SUBJECT | Index | 253 |