Table of Contents | relace | • | • | • | • | r | |--|-----|---|---|---|----------| | ntroduction | • | | | • | ; | | A. The general problem of integration | | | | | | | 1. The integral as a function of the domain . | | | | | 3 | | 2. Polyhedral chains | | | | | 5 | | 3. Two continuity hypotheses | | | | | 5 | | 4. A further continuity hypothesis | | | | | 6 | | 5. Some examples | | | | | 7 | | 6. The case $r=n$ | | | | | 7 | | 7. The r-vector of an oriented r-cell | | | | | 8 | | 8. On r-vectors and boundaries of $(r+1)$ -cells | | | | | 9 | | 9. Grassmann algebra | | | | | 10 | | 10. The dual algebra | | | | | 11 | | 11. Integration of differential forms | | | | | 13 | | 12. Grassmann algebra in metric oriented n-space | | | | | 13 | | 13. The same, $n = 3$ | • • | • | ٠ | • | | | 14. The differential of a mapping | • | • | • | • | 14
15 | | 15. Jacobians | | | | | 16 | | 16. Transformation of the integral | • | • | • | • | 17 | | 17. Smooth manifolds | • | • | • | • | 18 | | 18. Particular forms of integrals in 3-space | • | • | • | • | 19 | | 19. The Theorem of Stokes | • | • | • | • | 21 | | 20. The exterior differential | • | | • | | 21 | | 21. Some special formulas in metric oriented E^3 | • | | • | • | 23 | | 22. An existence theorem | | | • | • | 24 | | 23. De Rham's Theorem | • | | | | 25 | | C. Indications of general theory | | | | | | | 24. Normed spaces of chains and cochains | | | | | 27 | | 25. Continuous chains | • | • | • | • | 28 | | 26. On 0-dimensional integration | • | • | • | • | | | 20. On o-unitensional integration | • | • | • | • | 30 | ## Part I: Classical theory | Chapter | 1. Grassina | ann aige | ла | | | | | | | | | | | | |---------|--------------------------|--------------------|------------------------------|-------|------|------|-------|------|------|---|---|---|---|------------| | 1. | Multivecto | rs | | | | | | | | | | | | 35 | | 2. | Multicovec | tors . | | | | | | | | | | | | 37 | | 3. | Multicovec
Properties | of $V_{[r]}$ ar | $\operatorname{nd}\ V^{[r]}$ | • | | | | | | | | | | 38 | | 4. | Alternating | g r -linear | functi | ions | | | | | | | | | | 39 | | 5. | Use of coo | rdinate s | ystems | з. | | | | | | | | | | 40 | | | Exterior p | | | | | | | | | | | | | 41 | | 7. | Interior pr | oducts | | | | | | | | | | | • | 42 | | 8. | n-vectors i | $n \cdot n$ -space | e | | | | | | | | | | | 44 | | 9. | Simple mu | ltivector | s | | | | | | | | | | | 44 | | 10. | Linear ma | ppings of | vecto | r sp | aces | 3 | | | | | | | | 4 6 | | | Duality . | | | | | | | | | | | | • | 47 | | 12. | Euclidean | vector sp | oaces | | | | | | | | | • | • | 48 | | 13. | Mass and | comass | | | | | | | | | | | • | 52 | | 14. | Mass and | comass o | f prod | ucts | | | | | | | | | • | 55 | | 15. | On project | cions . | | • | | • | | • | • | • | • | • | • | 56 | | Chapter | II. Differe | ential for | ms | | | | | | | | | | | | | 1. | The differen | ential of | a smoo | oth 1 | mar | pir | ng | | | | | | | 58 | | 2. | Some prop | erties of | differe | entia | als | | | | | | • | | | 60 | | 3. | Differentia | al forms | | | | | | | | | | | | 61 | | | | | | | | | | | | | | | | 62 | | 5. | Smooth m
Use of coo | rdinate s | system | s . | | | | | • | | • | | | 63 | | 6. | Jacobians | | | | | • | • | ٠ | • | • | | | | 66 | | 7. | The invers | se and in | plicit | fun | ctio | n tl | heor | em | s. | | | | | 68 | | 8. | The exter | ior differ | ential | | | | | | | | | | • | 70 | | 9. | A represei | ntation o | f vecto | ors a | nd | cov | rect | ors | | | | | • | 74 | | | . Smooth m | | | | | | | | | | | | | 7 5 | | 11 | . The tange | nt space | of a s | moo | th 1 | nar | aifol | d | | | | | • | 75 | | 12 | . Differenti | al forms | in smo | oth | ma | nite | olds | • | | • | • | | • | 76 | | 13 | . A charact | erization | of the | ext | erio | or d | liffe | rent | tial | • | • | • | • | 77 | | Chapte | r III. Rien | nann inte | egratio | n th | eor | y | | | | | | | | | | 1 | . The r -vec | tor of an | orient | ed r | -sin | npl | ex | | | | | | | 80 | | | | | | | | | | | | | | | | 81 | | 3 | . The <i>r</i> -vec | on over c | ellular | cha | ins | | | | | | | | | 82 | | 4 | . Some pro | perties of | f integ | rals | | | | | | | | | | 83 | | 5 | . Some pro | to the Ri | iemanr | ı int | egr | al | | | | | | | | 84 | | 6 | . Integration | on over o | pen se | ts. | • | | | | | | | | | 85 | | | J | | - | | | | | | | | | | | | | TABLE OF CONTENTS | | xi | |---|-----|---| | 7. The transformation formula | | . 87 | | 8. Proof of the transformation formula | | . 89 | | 9. Transformation of the Riemann integral | | . 92 | | 10. Integration in manifolds | | . 92 | | 11. Stokes' Theorem for a parallelepiped | | . 94 | | 12. A special case of Stokes' Theorem | | . 96 | | 13. Sets of zero s-extent | | . 97 | | 14. Stokes' Theorem for standard domains | | . 99 | | | | 101 | | 15. Proof of the theorem | | 103 | | 17 Regular forms in smooth manifolds | | 106 | | 18. Stokes' Theorem for standard manifolds | | 108 | | 19. The iterated integral in Euclidean space | | 110 | | 201 2110 10010000 1110 8 001 111 21110 1110 110 11 | | | | Chapter IV. Smooth manifolds | | | | A Manifolds in Euglidean space | | | | A. Manifolds in Euclidean space | | | | 1. The imbedding theorem | | 113 | | 2. The compact case | | . 113 | | 3. Separation of subsets of E^m | | . 114 | | 4. Regular approximations | | . 115 | | 5. Proof of Theorem 1A, M compact | | 115 | | 6. Admissible coordinate systems in M | | . 116 | | 7. Proof of Theorem 1A, M not compact | | 117 | | 8. Local properties of M in E^m | | 117 | | 9. On <i>n</i> -directions in E^m | | 119 | | 10. The neighborhood of M in E^m | | 120 | | 11. Projection along a plane | | 123 | | • • | | | | B. Triangulation of manifolds | | | | 12. The triangulation theorem | | 124 | | 13. Outline of the proof | | 124 | | 14. Fullness | | 125 | | 15. Linear combinations of edge vectors of simplexes . | | 127 | | 16. The quantities used in the proof | | 128 | | | | 128 | | 17. The complex L | | 129 | | 19. The intersections of M with L^* | | *** | | 20. The complex K | • | 131 | | 21. Imbedding of simplexes in M | • • | 132 | | 21. The complexes K_p | • | 133 | | 23. Proof of the theorem $\dots \dots \dots$ | • | | | 49. I TOUL OF THE THEOLETT | | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | C. Cohomology in manifolds | | | | | | | | | |--|--------|---------------|------|------|------|------|-----|-----| | 24. μ -regular forms | | | | | | | | 135 | | 25. Closed forms in star shaped sets . | | | | | | | | 136 | | 26. Extensions of forms | | | | | | | | 137 | | 27. Elementary forms | | | | | | | | 138 | | on Out in along forms are derived | | | | | | | | 141 | | 29. Isomorphism of cohomology rings 30. Periods of forms | | | | | | • | | 142 | | 30. Periods of forms | | | | | | | | 143 | | 31. The Hopf invariant | | | | | | | | 143 | | 32. On smooth mappings of manifolds | | | | | | | | 145 | | 32. On smooth mappings of manifolds33. Other expressions for the Hopf inv | aria | \mathbf{nt} | | | | | | 147 | | | | | | | | | | | | Part II: General t | heor | У | | | | | | | | Chapter V. Abstract integration theory | | | | | | | | | | 1. Polyhedral chains | | | | | | | | 152 | | | | | | | | | | 153 | | | | | | | | | | 154 | | 4. Flat cochains | | | | | | | | 156 | | | | | | | | | | 158 | | 6. The sharp norm | | | | | | | | 159 | | 7. Sharp cochains | | | | | | | | 160 | | 8. Characterization of the norms | | | | | | | | 163 | | 9. An algebraic criterion for a multic | | | | | | | | 16 | | 10. Sharp r -forms | | | | | | | | 16 | | 11. Examples | | | | | | | | 17 | | 12. The semi-norms $ A ^{\flat}$, $ A ^{\sharp}$ are norm | ns . | | | | | | | 17 | | 13. Weak convergence | | | | | | | • | | | 14. Some relations between the space | s of | cha | ins | and | l co | cha | ins | 17 | | 15. The ρ -norms | | | | | | | | 17 | | 16. The mass of chains | | | | | | • | • | 17 | | 17. Separability of spaces of chains | | | | | | • | | | | 18. Non-separability of spaces of coch | ains | | | | | | • | 18 | | | | | | | | | | | | Chapter VI. Some relations between chair | ns ai | ıd fu | ınct | ion | S | | | | | 1. Continuous chains on the real line | | | | | • | • | | 18 | | 2. 0-chains in E^1 defined by function | ns of | bou | nde | ed v | aria | atio | n. | 19 | | 3. Sharp functions times 0-chains | | | | | • | • | • | 19 | | 4. The part $< T$ of a chain of finite | mas | s. | | | | | • | 19 | | 5. Functions of bounded variation i | in E | 1 de | fine | d b | y 0 | -cha | ins | 19 | | 6. Some related analytical theorems | | | | | | | • | 19 | | TABLE OF CONTENTS | | | xiii | |---|-----|---|------------| | 7. Continuous r-chains in E^n | | | 199 | | 8. On compact cochains | • | • | 202 | | 0.000 1 1 0 1 1 1 | • | • | 204 | | 9. The boundary of a smooth chain | • | • | 205 | | 10. Continuous chains in smooth mannoids | • | • | 200 | | Chapter VII. General properties of chains and cochains | | | | | 1. Sharp functions times chains | | | 208 | | 2. Sharp functions times cochains | | | 212 | | 3. Supports of chains and cochains | | | 213 | | 4. On non-compact chains | | | 217 | | 5. On polyhedral approximations | | | 219 | | 6. The r -vector of an r -chain | | | 220 | | 7. Sharp chains at a point | | | 221 | | 8. Molecular chains are dense | | | 223 | | 9. Flat r-chains in E^{r-k} are zero | | | 224 | | 10. Flat cochains in complexes | | | 225 | | 11. Elementary flat cochains in a complex | | | 226 | | 12. The isomorphism theorem | | | 229 | | | | | | | Chapter VIII. Chains and cochains in open sets | | | | | 1. Chains and cochains in open sets, elementary propert | ies | | 232 | | 2. Chains and cochains in open sets, further properties | | | 236 | | 3. Properties of mass | | | 241 | | 4. On the open sets to which a chain belongs | | | 243 | | 5. An expression for flat chains | | | 246 | | 6. An expression for sharp chains | | | 248 | | 1 | | | | | Part III: Lebesgue theory | | | | | Chapter IX. Flat cochains and differential forms | | | | | 1. n -cochains in E^n | | | 255 | | 2. Some properties of fullness | | | 256 | | 3. Properties of projections | | | 257 | | 4. Elementary properties of $D_X(p, \alpha)$ | | | 258 | | 5. The r-form defined by a flat r-cochain $\cdot \cdot \cdot \cdot$ | | | 260 | | 6. Flat r -forms | | | 262 | | 7. Flat r-forms and flat r-cochains | | | 263 | | 8. Flat r-direction functions | | - | 266 | | 9. Flat forms defined by components | • | • | 268 | | 10. Approximation to $D_X(p)$ by $X \cdot \sigma / \sigma $ | • | • | 270 | | 11. Total differentiability of Lipschitz functions | • | • | 271 | | 12. On the exterior differential of r-forms | • | • | 272 | | 12. On the execute differential of /-forms | • | • | | | TABLE OF CO. | NT | $L_{I}I$ | V Z | ı, | |--------------|----|----------|-----|----| |--------------|----|----------|-----|----| | xiv | TABLE OF CONTENTS | | | | | |---------|--|---|---|---|-----| | 13. | On averages of r -forms | | • | | 275 | | 14. | Products of cochains | | | | 276 | | 15. | Lebesgue chains | | | | 280 | | 16. | Products of cochains and chains | | • | | 281 | | 17. | Products and weak limits | • | ٠ | • | 284 | | 18. | Characterization of the products | | • | • | 286 | | Chapter | X. Lipschitz mappings | | | | | | | Affine approximations to Lipschitz mappings . | | | | 289 | | 2. | The approximation on the edges of a simplex . | | | | 290 | | 3. | Approximation to the Jacobian | | | | 292 | | | The volume of affine approximations | | | | 293 | | | A continuity lemma | | | | 295 | | | Lipschitz chains | | | | 296 | | | Lipschitz mappings of open sets | | | | 298 | | 8. | Lipschitz mappings and flat cochains | | | | 302 | | 9. | Lipschitz mappings and flat forms | | | | 302 | | 10. | Lipschitz mappings and sharp functions | | | | 305 | | 11. | Lipschitz mappings and products | | | | 306 | | 12. | On the flat norm of Lipschitz chains | | | | 307 | | | Deformations of chains | | | | 308 | | Chapter | XI. Chains and additive set functions | | | | | | - | | | | | 011 | | | On finite dimensional Banach spaces | | • | ٠ | 311 | | | Vector valued additive set functions | • | • | ٠ | 312 | | | Vector valued integration | ٠ | • | • | 314 | | | Point functions times set functions | • | • | • | 316 | | | Relations between a set function and its variation | • | • | ٠ | 318 | | 6. | On positive linear functionals | ٠ | • | • | 320 | | 7. | On bounded linear functionals | • | • | ٠ | 322 | | 8. | Linear functions of sharp r -forms | • | • | • | 323 | | 9. | The sharp norm of r-vector valued set functions | • | • | ٠ | 325 | | | Molecular set functions | • | • | • | 325 | | | Sharp chains and set functions | • | • | | 326 | | 12. | Bounded Borel functions times chains | | • | • | 328 | | 13. | The part of a chain in a Borel set | | • | | 329 | | 14. | Chains and point functions | | | • | 330 | | 15. | Characterization of the sharp norm | | | | 331 | | 16 | Expression for the sharp norm | | | | 333 | | 17. | Expression for the sharp norm | | | • | 335 | | Append | lix I. Vector and linear spaces | | | | | | 1. | Vector spaces | | | | 342 | | 2. | Linear transformations | | | | | | | | | | | 343 | |------------|--|------|-------|------|-----|-----|---|---|---|---|---|-------------| | 3. | Conjugate spaces | | | | | | | | | | | 343 | | 4. | Conjugate spaces Direct sums, complement | ts. | | | | | | | | | | 344 | | 5. | Quotient spaces | | | | | | | | | | | 345 | | 6. | Pairing of linear spaces | | | | | | | | | | | 345 | | 7. | Abstract homology | | | | | | | | | | | 346 | | | Normed linear spaces . | | | | | | | | | | | 346 | | 9. | Euclidean linear spaces | | | | | | | | | | | 348 | | 10. | Affine spaces | | | | | | | | | | | 349 | | 11. | Barycentric coordinates | | | | | | | | | | | 351 | | | Affine mappings | | | | | | | | | | | 352 | | | Euclidean spaces | | | | | | | | | | | 353 | | 14. | Banach spaces | | | | | | | | | | | 353 | | 15. | Semi-conjugate spaces. | | | | | | | | | | | 354 | | | | | | | | | | | | | | | | | ix II. Geometric and top | _ | | _ | | | | | | | | | | 1. | Cells, simplexes Polyhedra, complexes . | | | | | | | | | | | 356 | | 2. | Polyhedra, complexes . | | | | | | | | | | | 357 | | 3. | Subdivisions | | | | | | | | | | | 357 | | 4. | Standard subdivisions . | | | | | | | | | | | 358 | | 5. | Orientation | | | | | | | | | | | 360 | | 6. | Chains and cochains . | | | | | | | | | | | 361 | | 7. | Boundary and coboundar | ry. | | | | | | | | | | 362 | | 8. | Homology and cohomolog | gy | | | | | | | | | | 362 | | 9. | Products in a complex. | | | | | | | | | | | 363 | | 10. | Joins | | | | | | | | | | | 364 | | 11. | Subdivisions of chains . | | | | | | | | | | | 364 | | 12. | Cartesian products of cell | s. | | | | | | | | | | 365 | | 13. | Mappings of complexes | | | | | | | | | | | 366 | | 14. | Some properties of planes | s . | | | | | | | | | | 367 | | 15. | Mappings of n-pseudoman | nifo | lds i | into | n-s | pac | e | | | | | 368 | | | Distortion of triangulatio | | | | | | | | | | | 37 0 | | | | | | | | | | | | | | | | | x III. Analytical prelimi | | | | | | | | | | | | | 1. | Existence of certain func | tion | s | | | | | | | | | 372 | | | Partitions of unity | | | | | | | | | | | 373 | | | Smoothing functions by t | | | | | | | | | | | 373 | | | The Weierstrass approximately | | | | | | | | | | | 375 | | 5 . | Lebesgue theory | | | | | | | | | | | 376 | | 6. | The space L^1 | | | | | | | | | | | 378 | | r., d., 4 | 'armhala | | | | | | | | | | | 270 | | maex or | symbols | • | • | • | • | • | • | • | • | ٠ | • | 379 | | Index of | terms | | | | | | | | | | | 383 |