## CONTENTS

| Pre | face pa                                                   | ge ix      |
|-----|-----------------------------------------------------------|------------|
| Not | tation                                                    | хi         |
|     | Chapter 1. INTRODUCTORY                                   |            |
| 1   | Forms and their coefficients and variables                | 1          |
| 2   | The matrix and discriminant of a quadratic form           | 2          |
| 3   | The rank, signature and range of values of a quadrat form | cie<br>3   |
| 4   | Change of variables                                       | 5          |
| 5   | Relations between forms                                   | 7          |
| 6   | Rational diagonalization                                  | 9          |
| 7   | Rational automorphs                                       | 11         |
|     | Chapter 2. REDUCTION                                      |            |
| 1   | The problem of reduction; the minimum                     | 13         |
| 2   | Binary forms                                              | 14         |
| 3   | Representation of integers by binary forms                | 16         |
| 4   | Completing the square; Hermite's method of reduction      | 17         |
| 5   | Crude estimate for min $f$ ; classes with given $n$ , $d$ | 19         |
| 6   | Zero forms                                                | 21         |
| 7   | Representation of zero subject to congruence conditions   | 23         |
| 8   | Reciprocal forms                                          | 25         |
| 9   | Minkowski reduction of positive forms                     | 27         |
| 10  | Extreme forms                                             | 29         |
| 11  | Perfect forms                                             | <b>3</b> 0 |

| Chapter 3. THE RATIONAL INVARIAN |
|----------------------------------|
|----------------------------------|

| 1     | p-adic squares; the Legendre symbol pag                      | je 32      |
|-------|--------------------------------------------------------------|------------|
| 2     | p-adic zero forms                                            | 33         |
| 3     | The Hilbert symbol                                           | 35         |
| 4     | Quadratic reciprocity                                        | 38         |
| 5     | Necessary and sufficient conditions for representation       |            |
|       | of zero                                                      | 41         |
| 6     | The $p$ -adic rational invariants $\epsilon_p(f)$            | 44         |
| 7     | Necessary and sufficient conditions for rational relatedness | 47         |
|       | Chapter 4. p-ADIC EQUIVALENCE                                |            |
| 1     | Definition; invariance of $\epsilon_p(f)$                    | <b>5</b> 0 |
| 2     | The case $p  mid d$                                          | 51         |
| 3     | The case $p \neq 2$                                          | <b>54</b>  |
| 4     | Conditions for $p$ -adic equivalence                         | <b>56</b>  |
| 5     | 2-adic decomposition                                         | <b>5</b> 8 |
| 6     | A coarser p-adic decomposition                               | 61         |
| 7     | Quadratic congruences                                        | 62         |
| 8     | A property of $\epsilon_p(f)$                                | 65         |
| $C_i$ | hapter 5. THE CONGRUENCE CLASS AND THE GEN                   | rus        |
| 1     | Congruential equivalence                                     | 68         |
| 2     | Construction of congruence class with prescribed properties  | 69         |
| 3     | Semi-equivalence                                             | 72         |
| 4     | Decomposition under congruential equivalence and             | 74         |
|       | semi-equivalence                                             | 76         |
| 5     | Rational relations between semi-equivalent forms             | 79         |
| 6     | Representation of integers                                   | 81         |
| 7     | Representation by indefinite forms with $n \ge 4$            | 01         |

129

|                                               | Chapter 6. RATIONAL TRANSFORMATIONS                                  |           |  |  |
|-----------------------------------------------|----------------------------------------------------------------------|-----------|--|--|
| 1                                             | Equivalence of rational matrices                                     | page 84   |  |  |
| 2                                             | Rational relations between semi-equivalent form (further properties) | s<br>86   |  |  |
| 3                                             | Successive rational transformations                                  | 89        |  |  |
| 4                                             | Reflexions                                                           | 92        |  |  |
| 5                                             | Hermite's formula for the automorphs of a ternar form                | y<br>95   |  |  |
| 6                                             | Construction of automorphs                                           | 97        |  |  |
| 7                                             | The norms of automorphs; improvement of Theorem 50                   | 100       |  |  |
| Chapter 7. EQUIVALENCE AND SPINOR-RELATEDNESS |                                                                      |           |  |  |
| 1                                             | The spinor genus                                                     | 104       |  |  |
| 2                                             | Some possible values for the weight of an automorp modulo $\it d$    | oh<br>107 |  |  |
| 3                                             | A simpler congruence condition for spinor-related ness               | d-<br>110 |  |  |
| 4                                             | Decomposition                                                        | 112       |  |  |
| 5                                             | Representation of integers by a spinor genus                         | 113       |  |  |
| 6                                             | The exceptional integers of a ternary genus                          | 116       |  |  |
| 7                                             | Representation of integers by positive forms                         | 121       |  |  |
|                                               | Chapter 8. THE GENERAL RATIONAL AUTOMO                               | прн       |  |  |
| 1                                             | Factorization of automorphs into reflexions                          | 123       |  |  |
| 2                                             | Factorization into reflexions with odd denominate                    | ors 125   |  |  |
| 3                                             | Factorization of automorphs; further properties                      | 126       |  |  |

The norms of rational automorphs

| ***  |          |
|------|----------|
| viii | CONTENTS |

| 5          | Cayley's formula for the general rational automorph |          |  |
|------------|-----------------------------------------------------|----------|--|
|            | with determinant 1                                  | page 132 |  |
| 6          | Integral automorphs                                 | 133      |  |
| Notes      |                                                     | 135      |  |
| References |                                                     |          |  |
| Ind        | lex                                                 | 143      |  |