CONTENTS

Chapte	er I Operations with Vec	tors							
1.	The vector notation								. 1
2.	Addition of vectors								. 2
3.	Multiplication by scalars	S .							. 3
	Representation of a vector							vecto	rs 3
5.	Scalar product .								. 3
6.	Vector product .					٠.			. 5
7.	Scalar triple product								. 6
8.	Invariance under orthog	onal t	transfo	ormati	ons				. 7
9.	Vector calculus .	•	•	•		•	•	•	. 9
Chapte	r II Plane Curves								
1.	Introduction								. 12
	Regular curves .								. 12
3.	Change of parameters								. 14
4.	Invariance under change	s of p	arame	eter					. 16
5.	Tangent lines and tanger	it vec	tors o	f a cui	rve				. 16
6.	Orientation of a curve							•	. 18
7.	Length of a curve .								. 19
8.	Arc length as an invarian	at						•	. 20
	Curvature of plane curve								. 21
10.	The normal vector and t	he sig	n of *	:.					. 23
									. 26
12.	Existence of a plane curv	e for	given (curvat	ure κ				. 27
13.	Frenet equations for plan	ne cui	rves		•				. 28
	Evolute and involute of							•	. 29
	Envelopes of families of							•	. 31
16.	The Jordan theorem as								
	large					•		•	. 34
	Additional properties of						•		. 41
	The total curvature of a								. 45
19.	Simple closed curves wi	th K	≠ 0 a	s bou	ndarie	s of o	conve	c poin	
	sets			•	•				. 46
20.	Four vertex theorem	•	•	•	•	•	•	•	. 48

xviii CONTENTS

Chapter III Space Curves

1.	Regular curves					•	53
2.	Length of a curve				•	•	54
3.	Curvature of space curves	•			•		54
4.	Principal normal and osculating plane	•		•	•	•	55
5.	Curvature of space curves Principal normal and osculating plane Binormal vector	•	•		•	•	57
6.	Torsion τ of a space curve The Frenet equations for space curves Rigid body motions and the rotation vector	•				•	57
7.	The Frenet equations for space curves					•	58
8.	Rigid body motions and the rotation vector	r			•		58
9.	The Darboux vector			•	•	•	62
10.	Formulas for κ and τ . The sign of τ .		•	•		•	63
11.	The sign of τ .				•	•	63
12.	Canonical representation of a curve .			•		•	64
13.	Existence and uniqueness of a space curve f	or giv	en k(s), $\tau(s)$		•	65
14.	What about $\kappa = 0$? Another way to define space curves .				•		67
15.	Another way to define space curves .				•	•	68
16.	Some special curves		•			•	70
Chapte	er IV The Basic Elements of Surface Theor	y					
1	Regular surfaces in Euclidean space.						74
	Change of parameters						75
2.	Curvilinear coordinate curves on a surface	•	•	•	•		76
3. 1	Tongent plane and normal vector	•	•	•	•		77
4.	Tangent plane and normal vector . Length of curves and first fundamental for	rm	•		•		78
<i>5</i> .	Invariance of the first fundamental form	1111	•		•		78
						•	80
7.	Angle measurement on surfaces . Area of a surface		•		•	•	82
0.	A few angular				•	•	83
9. 10	A few examples Second fundamental form of a surface	•	•	•	•	•	85
10.	Oscillating marshalaid	•	•	•	•	•	86
11.	Osculating paraboloid Curvature of curves on a surface .	•	•		•		88
						•	91
13.	Principal directions and principal curvature Mean curvature H and Gaussian curvature	es •••	•	•	•	•	92
14.	Mean curvature H and Gaussian curvatur	ел <i>Р</i>	•	•	•	•	93
15.	Another definition of the Gaussian curvat	ure A	•	•	•	•	95
10.	Lines of curvature	•	•	•	•	•	98
	Third fundamental form					•	99
	Characterization of the sphere as a locus o					•	100
19.	Asymptotic lines	•	•	•	•	•	100
20.	Torsion of asymptotic lines	•	•	•		•	101
21.	Introduction of special parameter curves	•		•		•	101
22.	Asymptotic lines and lines of curvature as	para	meter	curve	S	•	103
	Embedding a given arc in a system of par						103
24.	Analogues of polar coordinates on a surfa	ice		•		•	104

CONTENTS	X13
	Alz

Chapter V Some Special Surfaces		
1. Surfaces of revolution		. 10
2. Developable surfaces in the small made up of parabolic		
3. Edge of regression of a developable	pomis	. 11
4. Why the name developable?	•	. 12
5. Developable surfaces in the large	•	. 12
	•	. 12
or zerosphotos de envelopes of planes	•	. 12
Chapter VI The Partial Differential Equations of Surface The	eory	
1. Introduction		. 13
2. The Gauss equations		
3. The Christoffel symbols evaluated		
4. The Weingarten equations		
5. Some observations about the partial differential equation	ons	13
6. Uniqueness of a surface for given g_{ik} and L_{ik} .		. 13
7. The theorema egregium of Gauss		. 13
8. How Gauss may have hit upon his theorem		. 14
9. Compatibility conditions in general		. 14
10. Codazzi-Mainardi equations		. 14
11. The Gauss theorema egregium again		. 14
11. The Gauss theorema egregium again 12. Existence of a surface with given g_{ik} and L_{ik}		. 14
13. An application of the general theory to a problem in the	large	. 14
Chapter VII Inner Differential Geometry in the Small from the Point of View	he Extri	insic
1. Introduction. Motivations for the basic concepts .		. 15
2. Approximate local parallelism of vectors in a surface.		. 15
3. Parallel transport of vectors along curves in the sense of		
4. Properties of parallel fields of vectors along curves		
5. Parallel transport is independent of the path only for su		
$ ing K \equiv 0 $	1114003	. 16
6. The curvature of curves in a surface: the geodetic curva	ture	. 16
7. First definition of geodetic lines: lines with $\kappa_g = 0$.		
		. 16
8. Geodetic lines as candidates for shortest arcs9. Straight lines as shortest arcs in the Euclidean plane	•	
10 A general necessary condition for a shortest arc	•	
10. A general necessary condition for a shortest arc.11. Geodesics in the small and geodetic coordinate systems		. 17
12. Geodesics as shortest arcs in the small		
13. Further developments relating to geodetic coordinate sy	eteme	. 179
14. Surfaces of constant Gaussian curvature	2161112	. 179
15. Parallel fields from a new point of view		. 18:
16. Models provided by differential geometry for nor		
. •	i-Eucii0	. 18:
geometries 17. Parallel transport of a vector around a simple closed cur		
17. I aranor transport of a vector around a simple closed cur	٧Ü .	. 17.

XX CONTENTS

18. Derivation of the Gauss-Bonnet formula		. 195
19. Consequences of the Gauss-Bonnet formula		. 196
20. Tchebychef nets		. 198
20. 10.00,0.01		
Chapter VIII Differential Geometry in the Large		
1. Introduction. Definition of <i>n</i> -dimensional manifolds.		. 203
2. Definition of a Riemannian manifold		. 206
3. Facts from topology relating to two-dimensional manifolds.	,	. 211
4. Surfaces in three-dimensional space		. 217
5. Abstract surfaces as metric spaces		. 218
6. Complete surfaces and the existence of shortest arcs.		. 220
7. Angle comparison theorems for geodetic triangles .		. 226
8. Geodetically convex domains		. 231
9. The Gauss-Bonnet formula applied to closed surfaces		. 237
10. Vector fields on surfaces and their singularities		. 239
11. Poincaré's theorem on the sum of the indices on closed surf	aces	. 244
12. Conjugate points. Jacobi's conditions for shortest arcs		. 247
13. The theorem of Bonnet-Hopf-Rinow		. 254
14. Synge's theorem in two dimensions		255
		. 259
16. Hilbert's theorem on surfaces in E^3 with $K \equiv -1$.	•	265
17. The form of complete surfaces of positive curvature in three-	dimen	•
sional space	J. 1111011	. 272
sional space	•	
Chapter IX Intrinsic Differential Geometry of Manifolds. Relative	itu	
Chapter 1A Thurmsic Differential Geometry of Manifolds. Relative	ity	
1. Introduction	•	. 282
Part I. Tensor Calculus in Affine and Euclidean Spaces		
2. Affine geometry in curvilinear coordinates		. 284
3. Tensor calculus in Euclidean spaces		. 287
4. Tensor calculus in mechanics and physics		. 292
Part II. Tensor Calculus and Differential Geometry in General Manifolds		
5. Tensors in a Riemannian space		. 294
6. Basic concepts of Riemannian geometry		. 296
7. Parallel displacement. Necessary condition for Euclidean	metric	cs 300
8. Normal coordinates. Curvature in Riemannian geometry		. 307
9. Geodetic lines as shortest connections in the small .	•	310
10. Geodetic lines as shortest connections in the large .	•	311
Part III. Theory of Relativity	•	
•		. 318
11. Special theory of relativity	•	. 310
12. Relativistic dynamics	•	•
13. The general theory of relativity		. 326

CONTENTS	xxi
----------	-----

Chapter X The Wedge Product and the Exterior Derivative of Differential Forms, with Applications to Surface Theory	
1. Definitions	335
2. Vector differential forms and surface theory	342
3. Scalar and vector products of vector forms on surfaces and their	
exterior derivatives	349
4. Some formulas for closed surfaces. Characterizations of the	.,
sphere	351
5. Minimal surfaces	356
6. Uniqueness theorems for closed convex surfaces	358
•	550
Appendix A Tensor Algebra in Affine, Euclidean, and Minkowski Spaces	
1. Introduction	371
2. Geometry in an affine space	371
3. Tensor algebra in centered affine spaces	375
4. Effect of a change of basis	378
5. Definition of tensors	380
6. Tensor algebra in Euclidean spaces	385
Appendix B Differential Equations	
1. Theorems on ordinary differential equations	388
2. Overdetermined systems of linear partial differential equations .	392
Bibliography	396
Index	<i>4</i> ∩1