## Contents

## CHAPTER ONE

| Two-Dimensional Manifolds                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Definition and examples of n-manifolds                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Orientable vs. nonorientable manifolds                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Examples of compact, connected 2-manifolds                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Statement of the classification theorem for compact surfaces       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Triangulations of compact surfaces                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Proof of Theorem 5.1                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The Euler characteristic of a surface                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Manifolds with boundary                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The classification of compact, connected 2-manifolds with boundary | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The Euler characteristic of a bordered surface                     | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Models of compact bordered surfaces in Euclidean 3-space           | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Remarks on noncompact surfaces                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                    | Introduction  Definition and examples of n-manifolds Orientable vs. nonorientable manifolds Examples of compact, connected 2-manifolds Statement of the classification theorem for compact surfaces Triangulations of compact surfaces Proof of Theorem 5.1 The Euler characteristic of a surface Manifolds with boundary The classification of compact, connected 2-manifolds with boundary The Euler characteristic of a bordered surface Models of compact bordered surfaces in Euclidean 3-space |

## xviii / CONTENTS

| CHAPTER TWO                                                 |                                                                 |            |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------|------------|--|--|
| Th                                                          | e Fundamental Group                                             | 55         |  |  |
| 1                                                           | Introduction                                                    | 55         |  |  |
| 2                                                           | Basic notation and terminology                                  | 56         |  |  |
| 3                                                           | Definition of the fundamental group of a space                  | 58         |  |  |
| 4                                                           | The effect of a continuous mapping on the fundamental group     | 63         |  |  |
| 5                                                           | The fundamental group of a circle is infinite cyclic            | 68         |  |  |
| 6                                                           | Application: The Brouwer fixed-point theorem in dimension 2     | <b>74</b>  |  |  |
| 7                                                           | The fundamental group of a product space                        | <b>7</b> 6 |  |  |
| 8                                                           | Homotopy type and homotopy equivalence of spaces                | 78         |  |  |
| СН                                                          | APTER THREE                                                     |            |  |  |
| Free Groups and Free Products of Groups                     |                                                                 |            |  |  |
| 1                                                           | Introduction                                                    | 85         |  |  |
| 2                                                           | The weak product of abelian groups                              | 85         |  |  |
| 3                                                           | Free abelian groups                                             | 89         |  |  |
| 4                                                           | Free products of groups                                         | 97         |  |  |
| 5                                                           | Free groups                                                     | 102        |  |  |
| 6                                                           | The presentation of groups by generators and relations          | 105        |  |  |
| 7                                                           | Universal mapping problems                                      | 108        |  |  |
| CHAPTER FOUR                                                |                                                                 |            |  |  |
| Seifert and Van Kampen Theorem on the                       |                                                                 |            |  |  |
| Fundamental Group of the Union of Two Spaces.  Applications |                                                                 | 113        |  |  |
| 1                                                           | Introduction                                                    | 113        |  |  |
| 2                                                           | Statement and proof of the theorem of Seifert and<br>Van Kampen | 114        |  |  |

|     | CONTENTS                                                                         | / | XIX         |
|-----|----------------------------------------------------------------------------------|---|-------------|
| 3   | First application of Theorem 2.1                                                 |   | 122         |
| 4   | Second application of Theorem 2.1                                                |   | 127         |
| 5   | Structure of the fundamental group of a compact surface                          |   | 129         |
| 6   | Application to knot theory                                                       |   | 136         |
|     |                                                                                  |   |             |
| C H | APTER FIVE                                                                       |   |             |
| Co  | overing Spaces                                                                   |   | 145         |
| 1   | Introduction                                                                     |   | 145         |
| 2   | Definition and some examples of covering spaces                                  |   | 145         |
| 3   | Lifting of paths to a covering space                                             |   | 151         |
| 4   | The fundamental group of a covering space                                        |   | 154         |
| 5   | Lifting of arbitrary maps to a covering space                                    |   | 155         |
| 6   | Homomorphisms and automorphisms of covering spaces                               |   | 158         |
| 7   | The action of the group $\pi(X, x)$ on the set $p^{-1}(x)$                       |   | 161         |
| 8   | Regular covering spaces and quotient spaces                                      |   | 164         |
| 9   | Application: The Borsuk-Ulam theorem for the 2-sphere                            |   | 170         |
| 10  | The existence theorem for covering spaces                                        |   | <b>17</b> 3 |
| 11  | The induced covering space over a subspace                                       |   | 177         |
| 12  | Point set topology of covering spaces                                            |   | 180         |
|     |                                                                                  |   |             |
|     | IAPTER SIX                                                                       |   |             |
|     | ne Fundamental Group and Covering Spaces of a Graph. Oplications to Group Theory |   | 189         |
| 1   | Introduction                                                                     |   | 189         |
| 2   | Definition and examples                                                          |   | 190         |
| 3   | Basic properties of graphs                                                       |   | 192         |

| хx  | / CONTENTS                                                    |     |
|-----|---------------------------------------------------------------|-----|
| 4   | Trees                                                         | 194 |
| 5   | The fundamental group of a graph                              | 197 |
| 6   | The Euler characteristic of a finite graph                    | 200 |
| 7   | Covering spaces of a graph                                    | 201 |
| 8   | Generators for a subgroup of free group                       | 204 |
| СH  | APTER SEVEN                                                   |     |
| -   | e Fundamental Group of Higher Dimensional Spaces              | 211 |
|     | · ·                                                           | 244 |
| 1   | Introduction                                                  | 211 |
| 2   | Adjunction of 2-cells to a space                              | 212 |
| 3   | Adjunction of higher dimensional cells to a space             | 214 |
| 4   | CW-complexes                                                  | 215 |
| 5   | The Kurosh subgroup theorem                                   | 218 |
| 6   | Grushko's Theorem                                             | 225 |
|     |                                                               |     |
| C F | IAPTER EIGHT                                                  |     |
| E   | oilogue                                                       | 236 |
|     |                                                               |     |
| A I | PPENDIX A                                                     |     |
| T   | he Quotient Space or Identification Space Topology            | 243 |
| 1   | Definitions and basic properties                              | 243 |
| 2   | A generalization of the quotient space topology               | 246 |
| 3   | Quotient spaces and product spaces                            | 249 |
| 4   | Subspace of a quotient space vs. quotient space of a subspace | 250 |
| 5   | Conditions for a quotient space to be a Hausdorff space       | 251 |

| APPENDIX B                                  |                      |     |  |  |
|---------------------------------------------|----------------------|-----|--|--|
| Permutation Groups or Transformation Groups |                      | 254 |  |  |
| 1                                           | Basic definitions    | 254 |  |  |
| 2                                           | Homogeneous G-spaces | 256 |  |  |
|                                             |                      |     |  |  |
|                                             |                      |     |  |  |

Index

CONTENTS / xxi

259