TRANSCENDENCE METHODS

Michel WALDSCHMIDT

p.1.1

p.1.6

p.1.10

p.5.3

p.5.8

p.5.10

p.5.2

p.4.11

\$1.1 Liouville estimates

§4.5 Further results and comments

\$5.1 An alternative method for the last step _____

\$5.2 A second proof of Baker's theorem

§5.3 Final descent

\$514 Lower bounds for linear forms in logarithms

Lecture 1: Preliminary results

Lecture 5: Kummer's theory

\$1.2 Siegel's lemma

§1.3 Schwarz lemma

Lecture 2: Gelfond's method	
§2.1 Gel'fond's solution of Hilbert's seventh problem	p.2.1
\$2.2 Schneider-Lang's criterion	
Lecture 3: Schneider's method	
§3.1 Schneider's solution of Hilbert's seventh problem	p.3.1
\$3.2 Consequences of Schneider's method	p.3.5
§3.3 On the product of the conjugates outside the unit	
circle of an algebraic integer.	p.3.8
Lecture 4: Baker's method	
§4.1 The results (qualitative form)	p.4.1
§4.2 Sketch of the proof	p.4.2
§4.3 The proof	p.4.5
§4.4 Conclusion of the proof	p.4.8

Lecture 6: Linear independence of elliptic logarithms	
§6.1 The results (qualitative form)	p.6.1
§6.2 The lemma of Baker-Coates-Anderson	p.6.3
§6.3 The main lemma	p.6.7
§6.4 Bashmakov's theorem	p.6.12
§6.5 Further results and comments	p.6.13
Lecture 7: Transcendence and linear independence of periods.	
§7.1 Historical survey	p.7.1
§7.2 Elliptic integrals of the third kind	p.7.6
§7.3 Further results and comments	p.7.11
Lecture 8: Algebraic independence of periods	
§8.1 Choodnovsky's results	p.8.1
§8.2 Gel'fond's transcendence criterion	p.8.5
§8.3 Zeroes of polynomials in z, β(z), ζ(z)	p.8.6
§8.4 Proof of Choodnovsky's theorem	p.8.11
§8.5 Further results and comments	p.8.15
Lecture 9: Schneider's method in several variables	
§9.1 Polynomials in several variables	p.9.2
§9.2 A Schwarz lemma in several variables	p.9.5
§9.3 A new proof of Baker's theorem in the real case	p.9.9
§9.4 Generalized Dirichlet exponent	p.9.12
Lecture 10: Gel'fond's method in several variables	
\$10.1 Singularities of algebraic hypersurfaces and L ²	
estimates	p.10.1
§10.2 Bombieri's theorem	p.10.4
\$10.3 Further results and comments	p.10.7
310.0 10101101 100011	