Contents | | Pa ge | |--|-----------| | Chapter 1. Quadratic forms over a field. | | | 1. Quadratic forms. | 1 | | 2. Quadratic spaces. | 5 | | 3. Diagonalization. | 7 | | 4. Elementary properties of isometry. | 10 | | 5. Witt cancellation. | 14 | | 6. The quaternionic structure associated to F. | 17 | | 7. Quaternion algebras. | 20 | | 8. The natural embedding of Q(F) into Br(F). | 25 | | o. The natural embedding of Q(r) into br(r). | 23 | | Chapter 2. Quaternionic structures and their associated Wi | tt rings. | | 1. Quaternionic structures. | 28 | | 2. The associated form theory. | 30 | | 3. Representation of elements of G by forms. | 36 | | 4. The Witt ring. | 38 | | 5. Some examples. | 41 | | | | | Chapter 3. The Fundamental Ideal. | | | 1. Pfister forms. | 44 | | The fundamental ideal. | 46 | | 3. The quotient I/I^2 . | 48 | | 4. The Hasse invariant. | 50 | | 5. The quotient I^2/I^3 . | 53 | | 6. Local fields. | 56 | | 7. The Arason Pfister property. | 59 | | The Rudon Histor property. | 33 | | Chapter 4. Abstract Witt Rings. | | | An equivalence of categories. | 62 | | 2. Finiteness conditions. | 71 | | 3. Signatures and orderings. | 74 | | 4. The local-global property of Pfister. | 76 | | 5. Prime ideals and the milradical. | 80 | | 6. Units. | 83 | | 7. Pfister quotients. | 85 | | 8. Reduced Witt rings. | 88 | | nedakad wree rings. | 00 | | Chapter 5. Structure of finitely generated Witt Rings. | | | l. A partial operation of Q_R . | 92 | | The structure of skew-symmetric bilinear mappings. | 94 | | 3. Witt rings of local type. | 95 | | 4. Direct products. | 99 | | 5. The normalized decomposition. | 102 | | 6. A decomposition criterion. | 107 | | | | Page | |----------------------------------|---|---------------------------------| | 7.
8.
9.
10.
11. | Basic indecomposible Witt rings. Witt rings with $ G_R <\infty$, $ Q_R \leq 4$. The case $ Q_R(a) \leq 4$ \forall a \in G_R . | 111
114
119
125
133 | | * | Values achieved by $ Q_R $ in the interval [1, 16]. | 137 | | Chapter | 6. Finitely generated reduced Witt Rings. | | | 1.
2.
3. | - R | 141
144
147 | | 4. | K | 152 | | 5.
6.
7. | Some technical lemmas. | 153
159
162 | | Chapter | 7. Representation of reduced Witt rings. | | | 1. | The topology in X_R . | 169 | | 2.
3.
4.
5.
6. | (dreame): | 173
176
183
187
190 | | Chapter | 8. Sheaves of Reduced Witt rings. | | | 1.
2.
3.
4.
5.
6. | Sheaves. A topological construction. Construction of the sheaf. Sheaf representations of Witt rings. Connected components revisited. Reduced Witt rings with X _R having only finitely accumulation points. More general types of reduced Witt rings. | 217 | | 8. | | 219
222 | | Chapter | 9. A Local-Global Principle for Isotropy. | | | 1.
2.
3. | The statement of the isotropy principle. The proof in case st(R) $< \infty$. Concluding remarks. | 226
229
234 | | | | Page | |------------|--|------| | Chapter | 10. Quadratic forms over semi-local rings. | | | l. | Elementary properties of semi-local rings. | 237 | | 2. | Quadratic forms. | 241 | | 3. | Isotropic forms. | 244 | | 4. | An inductive description of isometry. | 248 | | 5. | The associated quaternionic structure. | 251 | | References | | 253 |