TABLE OF CONTENTS

Preface	
Notation	v
Introduction. General Scheme of the Dispersion Method	
1. Binary and ternary problems	1
2. Outline of the dispersion method in the simplest case	5
3. Different versions of the dispersion method. The covariance of the number of solutions	8
4. Extension of the concept of covariance of the number of solutions.	
Coherent numbers	15
5. A variant on the dispersion method, including the application of	
covariance, in the absence of sufficiently many coherent numbers	17
6. Some particular cases of the application of the dispersion method	19
CHAPTER I. LEMMAS ON THE NUMBER OF DIVISORS, ON PRIME NUMBERS AND TRIGONOMETRIC SUMS	
1. Lemmas on the number of divisors	23
2. Lemmas on the distribution of numbers m with certain restrictions on the value of $\Omega(m)$	27
3. Lemmas proved by the method of the sieve of Eratosthenes	27
4. Lemmas on certain sums containing Dirichlet characters	29
5. Quasiprime numbers	30
6. Lemmas on the distribution of primes and of certain products in progressions	31
7. Lemmas on trigonometric sums	34
CHAPTER II. LEMMAS FROM THE ANALYTIC THEORY OF QUADRATIC FORMS	
1. Fundamental equations of the dispersion method for the divisor	
problem	36
2. Lemma on the fundamental equations	37
3. Analysis of the fundamental congruence	40
4. Application of the method of Vinogradov	43
5. An asymptotic formula for the number of solutions when $(x, z) = 1$	46
6. The case $(x, z) > 1$	48

7.	Comparison of the results for coherent numbers	50
	Lemma for the Hardy-Littlewood problem	52
	Analysis of the fundamental congruence. Another lemma	54
10.	Lemma on a certain indefinite quaternary form	55
11.	Preparation for the application of Vinogradov's method	58
12.	Application of the method of I. M. Vinogradov	59
13.	Summation of the basic series	61
14.	A quaternary indefinite form of more general type	62
Снар	TER III. THE ADDITIVE DIVISOR PROBLEM	
1.	Statement of the problem and several results	64
	Application of the dispersion method	66
3.	Preparatory transformations of the equation	67
4.	The dispersion of the difference between solutions for coherent	
	numbers	72
	Application of the Čebyšev inequality	73
6.	Reduction of the additive divisor problem to a ternary additive	
	problem	75
	Further transformations. Estimation of the error term	79
	The final formula for the number of solutions	81
9.	Application of the dispersion method to other cases of the additive divisor problem.	82
Снар	TER IV. APPLICATION OF THE DISPERSION METHOD TO A GENERALIZATION OF A THEOREM OF KLOOSTERMAN	
1.	Statement of the problem	84
	Preparatory transformations of equation (4.1.5)	86
Снав	PTER V. ON A CERTAIN BINARY EQUATION OF GENERAL TYPE INVOLVING A QUADRATIC FORM	
1.	Statement of the problem	91
	On one particular case of equation (5.1.1)	92
	The final formula for the number of solutions of (5.2.1)	94
Снав	PTER VI. ANALOGUES OF A HARDY-LITTLEWOOD EQUATION	
1.	Statement of the problem	95
	Reduction of the equations to a form convenient for the application	
	of the dispersion method	96
3.	The case $k = 6$	98
4	Transformation of equation (6.1.1)	99

	TABLE OF CONTENTS	ix
5	Determination of $A(n, D)$	99
	The dispersion of the number of solutions. Calculation of V_1	102
7.	Calculation of the product over primes in V_1	102
	Calculation of V_3	107
	Calculation of the products over primes in V_3	109
	Calculation of V_2	112
	Calculation of the product over primes in V_2	115
	Application of the Čebyšev inequality	116
	Derivation of the asymptotic expression for the solutions	117
Снар	TER VII. A PROBLEM OF HARDY AND LITTLEWOOD	
1.	On an equation of Hardy and Littlewood	119
2.	Transformation of the Hardy-Littlewood equation	120
	The equations $Y'_k, k \leq 5$	121
	Investigation of $Q'_k(n)$	123
5.	The nonirregular intervals	125
	Transformation of the number of solutions	126
7.	The final formula for $Q_k^{(2)}(n)$	129
	Investigation of $Q_k^{(0)}(n)$	130
	Investigation of Σ_B	132
	The covariance of the solutions of the auxiliary equations	134
	Investigation of the class A_{II}	136
	Estimation of Σ_E	137
	Estimation of Σ_2	139
	Estimation of Σ_D	141
	Preparation for the estimation of Σ_C	145
	Investigation of the fundamental congruences	148
	Further examination of the fundamental congruences	149
	Continuation of the examination of the fundamental congruences	151
19.	Estimation of Σ_C	152
20.	Investigation of Σ_A	154
	Estimation of the auxiliary sum	157
	Estimation of the error term	160
	Final calculation of $Q'_k(n)$	161
24.	Completion of the proof	163
Снар	TER VIII. A PROBLEM OF TITCHMARSH CONCERNING DIVISORS AND PRIMES	
1.	Statement of the problem	164
	Application of the dispersion method	165
	The equations Y'_k for $k \leq 5$	167

4. Investigation of $Q_k^{(0)}(n)$. Coherent numbers	168
5. Investigation of Σ_B	170
6. The differences between the values of Σ_A and between the values	
of Σ_C	172
7. Reduction of the binary additive problem to a ternary one	173
8. Solution of the ternary problem	174
CHAPTER IX. OUTLINE OF THE SOLUTION OF A GENERALIZATION OF THE HARDY-LITTLEWOOD EQUATION	
1. Statement of the problem	176
2. Outline of the solution	177
CHAPTER X. SUPPLEMENT	
1. On simplifying the calculation of the dispersion	179
2. Certain deductions from the application of the dispersion method to	
the binary Goldbach problem and its analogues	180
3. On the equation $n = p + x^2$ and its analogues	180
BIBLIOGRAPHY	183