CONTENTS

FOREWORD	ix
Editor's Preface to the Russian Edition	xi
CHAPTER I. FUNCTIONS OF A REAL VARIABLE	
(BASIC IDEAS AND THEOREMS)	1
§ 1. Linear Point Sets. Power and Category	1
§ 2. The Lebesgue Measure of Linear Sets	16
§ 3. Basic Classes of Functions	22
§ 4. The Derivative and its Generalization	31
§ 5. The Integration of Functions	36
§ 6. Sequences of Functions	52
§ 7. Orthogonal Systems of Functions	60
§ 8. Functions of Several Variables	70
§ 9. Basic Function Spaces	78
CHAPTER II. THE INTERPOLATION AND APPROXIMATION	
OF FUNCTIONS	86
§ 1. Introductory Remarks	86
§ 2. The Interpolation of Functions by Polynomials	87
2.1. The Simplest Interpolation Problem. The Lagrange and	•
Newtonian Interpolation Polynomials	87
2.2. Interpolation by Trigonometric Polynomials	92
2.3. General Interpolation Problems. Hermite's formula	95
2.4. The Convergence of Interpolation Polynomials	96
2.5. Operations on Interpolation Polynomials Leading to	
Convergent Processes	103
2.6. Generalized Interpolation Polynomials	104
2.7. Remarks	105
§ 3. Uniform Approximations of Functions of one Variable by Poly-	
nomials and their Generalizations	107
3.1. General Remarks on the Approximation of Functions	107
3.2. Weierstrass' Theorem	108
3.3. Bernstein Polynomials	109
3.4. The Best Uniform Approximations of Functions by Poly-	
nomials of a Given Degree	110
3.5. Chebyshev's Results for Best Approximations	112
3.6. The Approximate Formation of Best Approximating	
Chebyshev Polynomials	114

3.7. The Best Approximations to Continuous and Differentiable	
Periodic Functions by Trigonometric Polynomials of a	110
Given Degree	118
3.8. The Best Approximations of Continuous and Differentiable	123
Functions by Algebraic Polynomials of a Given Degree	123
3.9. The Best Approximations of Functions by Integral Func-	129
tions	129
3.10. Weighted Approximations of Functions on the Whole	131
Numerical Axis	
§ 4. Methods of Uniform Approximation of Functions	132
4.1. The Approximation of Periodic Functions by Fourier Sums	132
4.2. Linear Methods of Approximation of Periodic Functions by	
Trigonometric Polynomials (the methods of Féjer, LaVallée	135
Poussin and Bernstein-Rogosinski)	190
4.3. Linear Methods of Approximation of Functions by	139
Algebraic Polynomials	143
4.4. The Best Linear Methods of Approximation of Functions	
§ 5. The Approximation of Functions of one Variable in the Mean	146
5.1. General Remarks	146
5.2. Best Approximations in the Mean	148
5.3. Systems of Functions which Best Approximate Some Class	151
of Functions	151
§ 6. The Approximation of Functions of Many Variables	152
6.1. Basic Ideas	152
6.2. The Theory of Best Approximations of Functions of Many	150
Variables	156
§ 7. The Theory of Approximations in Banach Spaces	158
7.1. General Ideas. Best Approximations in Hilbert Spaces. The	
Method of Least Squares for the Construction of best Ap-	150
proximations	158
7.2. The Connection Between the Best Approximations and the	160
Entropy of the Sets	100
7.3. The Theory of Best Chebyshev Approximations on Com-	162
pacta 7.4. Some General Remarks on the Theory of Approximation	102
of Functions	164
of Pulicuons	-0-
CHAPTER III. ALMOST-PERIODIC FUNCTIONS	170
§ 1. Uniform Almost-periodic Functions on a Straight Line	170
1.1. Various Definitions of Almost-periodic Functions	170
1.2. The Simplest Basic Properties of Almost-periodic Func-	
tions	171
1.3. Fourier Series	172
1.4. Formal Operations on Fourier Series	175
1.5. Basic Theorems	176
1.6. The Approximation Theorem	178
1.7. The Convergence of Fourier Series for Some Classes of	150
Uniform Almost-periodic Functions	179

CONTENTS	vii

1.8. The Relation Between the Fourier Exponents and Almost-		
periods	181 182	
1.9. Kronecker's Theorem		
1.10. Limited Periodic Functions	183	
1.11. The Theorem of the Argument of a Uniform Almost-periodic Function	183	
1.12. N-almost-periodic Functions	184	
1.13. Linear Differential Equations with Almost-periodic		
Coefficients	186	
§ 2. Various Generalizations of Almost-periodic Functions	188	
2.1. Introductory Remarks	188	
2.2. The Definition and Simplest Properties of Stepanov Almost-		
periodic Functions	188	
2.3. The Definition and Simplest Properties of Weyl Almost-	***	
periodic Functions	190	
2.4. The Mean Value Theorem for W^p -almost-periodic functions. Parseval's Equation for W^2 - and S^2 -almost-periodic Func-		
tions. The Approximation Theorem	191	
2.5. Besicovitch Almost-periodic Functions	192	
2.6. The Idea of Almost-periodic Functions on Groups	193	
§ 3. Analytic Almost-periodic Functions	195	
3.1. The Definition of Analytic Almost-Periodic Functions and		
Their Simplest Properties	195	
3.2. Dirichlet Series	197	
3.3. The Convergence of the Dirichlet Series for Analytic Almost- periodic Functions	199	
3.4. The Behaviour of Almost-periodic Functions when $\sigma = +\infty$	200	
(analogues of the theorems of Weierstrass-Sokhotskii and		
Picard theorems)	199	
3.5. Harmonic Almost-periodic Functions	200	
3.6. The Mean Movement and Density of Values of Analytic		
Almost-periodic Functions	201	
References	206	
Index of Symbols	209	
Index	211	
LIST OF OTHER TITLES IN THE SERIES		