CONTENTS | Notation | ix | |---|----| | Chapter XII | | | TOPOLOGY AND TOPOLOGICAL ALGEBRA | 1 | | Chapter XIII | | | INTEGRATION Definition of a measure. Real measures. Positive measures. The absolute value of a measure. The vague topology. Upper and lower integrals with respect to a positive measure. Negligible functions and sets. Lebesgue's convergence theorems. Integrable functions. Integrals of vector-valued functions. The spaces L¹ and L². The space L∞. Measures with base μ. Integration with respect to a positive measure with base μ. The Lebesgue-Nikodym theorem and the order relation on M_R(X). Applications: I. Integration with respect to a complex measure. Applications: II. Dual of L¹. Canonical decompositions of a measure. Support of a measure. Measures with compact support. Bounded measures. Product of measures. | 95 | | Chapter XIV INTEGRATION IN LOCALLY COMPACT GROUPS | | | | :: | ## viii CONTENTS group. 6. Examples and particular cases of convolution of measures. 7. Algebraic properties of convolution. 8. Convolution of a measure and a function. 9. Examples of convolutions of measures and functions. 10. Convolution of two functions. 11. Regularization. | Chapter XV | |--| | NORMED ALGEBRAS AND SPECTRAL THEORY 282 | | Normed algebras. Spectrum of an element of a normed algebra. Characters and spectrum of a commutative Banach algebra. The Gelfand transformation. Banach algebras with involution. Star algebras. Representations of algebras with involution. Positive linear forms, positive Hilbert forms, and representa- | | tions. 7. Traces, bitraces, and Hilbert algebras. 8. Complete Hilbert algebras. 9. The Plancherel-Godement theorem. 10. Representations of algebras of con- | | tinuous functions. 11. The spectral theory of Hilbert. 12. Unbounded normal operators. 13. Extensions of hermitian operators. | | References | 417