Contents | Preface Introduction Contents of Volumes I and II | xiii
xxi | | | | |---|-------------|--|--|--| | Chapter 0 Algebraic Preliminaries | 1 | | | | | PART 1 | | | | | | Chapter I Spectral Sequences | | | | | | 1. Filtrations | 19 | | | | | 2. Spectral sequences | 25 | | | | | 3. Graded filtered differential spaces | 31 | | | | | 4. Graded filtered differential algebras | 45 | | | | | 5. Differential couples | 48 | | | | | Chapter II Koszul Complexes of P-Spaces and P-Algebras | | | | | | 1. P-spaces and P-algebras | 53 | | | | | 2. Isomorphism theorems | 62 | | | | | 3. The Poincaré-Koszul series | 67 | | | | | 4. Structure theorems | 70 | | | | | 5. Symmetric P-algebras | 78 | | | | | 6. Essential P-algebras | 90 | | | | | Chapter III Koszul Complexes of P-Differential Algebras | | | | | | 1 P-differential algebras | 95 | | | | | 2. Tensor difference | 103 | | | | | 3. Isomorphism theorems | 109 | | | | | 4. Structure theorems | 114 | | | | | 5. Cohomology diagram of a tensor difference | 126 | | | | | 6. Tensor difference with a symmetric P-algebra | 135 | | | | | 7. Equivalent and c-equivalent (P, δ) -algebras | 147 | | | | | | | | | | viii Contents ## PART 2 | Chap | ter IV Lie Algebras and Differential Spaces | | |----------------|---|------------| | 1. Li
2. Re | ie algebras | 57
59 | | Chan | oter V Cohomology of Lie Algebras and Lie Groups | | | _ | 4. | 74 | | 1. Ex | xterior algebra over a Lie algebra | 85 | | | nimodular Lie algebras eductive Lie algebras | 88 | | 3. R
4. T | The structure theorem for $(\wedge E)_{\theta=0}$ | 93 | | 5. T | The structure of ($\wedge E^*$) $_{e=0}$ | 99 | | | huality theorems | 06 | | 7. C | shomology with coefficients in a graded Lie module | 10 | | 8. A | pplications to Lie groups 2 | 15 | | Char | oter VI The Weil Algebra | | | - | , | 23 | | | The Weil algebra | 31 | | 2. T | The canonical map ρ_E The distinguished transgression | 36 | | 3. T | The structure theorem for $(\nabla E^*)_{e=0}$ | 41 | | 5. T | The structure theorem for $(\vee E)_{\theta=0}$, and duality | 249 | | 6. C | obomology of the classical Lie algebras | 253 | | 7. T | The compact classical Lie groups | 264 | | Cha | pter VII Operation of a Lie Algebra in a Graded | | | | Differential Algebra | | | 1. E | Elementary properties of an operation | 273 | | 2. E | Gramples of operations | 278 | | 3. T | The structure homomorphism | 284 | | 4 F | Fibre projection | 292
300 | | 5. (| Operation of a graded vector space on a graded algebra | 300
307 | | 6. | Transformation groups | 307 | | Cha | pter VIII Algebraic Connections and Principal Bundles | | | 1. I | Definition and examples | 314 | | 2. | The decomposition of R | 319
331 | | 3. (| Geometric definition of an operation | 340 | | | The Weil homomorphism | 352 | | 5. l | Principal bundles | 200 | | Cha | apter IX Cohomology of Operations and Principal Bundles | | | 1. ' | The filtration of an operation | 359 | | 2. | The fundamental theorem | 363 | | Contents | ix | |----------|----| | | | | 3.
4.
5.
6.
7. | • | 371
378
382
390
397 | |--|--|---| | Cł | napter X Subalgebras | | | 1.
2.
3.
4.
5.
6.
7.
8.
9. | Operation of a subalgebra The cohomology of $(\wedge E^*)_{i_F=0,\;\theta_F=0}$ The structure of the algebra $H(E F)$ Cartan pairs Subalgebras noncohomologous to zero Equal rank pairs Symmetric pairs Relative Poincaré duality Symplectic metrics | 411
420
427
431
436
442
447
450
454 | | Cl | napter XI Homogeneous Spaces | | | 1.
2.
3.
4.
5. | The cohomology of a homogeneous space The structure of $H(G K)$ The Weyl group Examples of homogeneous spaces Non-Cartan pairs | 457
462
469
474
486 | | Ch | napter XII Operation of a Lie Algebra Pair | | | 1.
2.
3.
4.
5. | Basic properties The cohomology of B_F Isomorphism of the cohomology diagrams Applications of the fundamental theorem Bundles with fibre a homogeneous space | 498
509
519
526
540 | | Aŗ | opendix A Characteristic Coefficients and the Pfaffian | | | 1.
2. | Characteristic and trace coefficients Inner product spaces | 547
554 | | N | otes | 563 | | Re | eferences | 574 | | Bi | bliography | 575 | | Inc | dex | 587 |