TABLE

Chapitre I THEORIE DES ENSEMBLES

& 1 ENSEMBLES. OPERATIONS ELEMENTAIRES

•	_		
		Parties d'un ensemble	3
		Relations d'inclusion complémentaires	4
		Réunion. Intersection	4
		Ensemble produit	5
§	2	APPLICATIONS, FONCTIONS	6
		Exemples d'applications	6
		Injections, surjections, bijections	7
		Image directe et image réciproque d'une	
		partie	8
		Ensembles d'applications. Familles, suites	ç
		Application composée	10
		Changements de variables et changements	
		de fonctions	13
Ş	3	RELATIONS D'EQUIVALENCE, ENSEMBLE QUOTIENT	13

Classes d'équivalence. Partitions

Ensemble quotient

13 14

		Quotient d'un groupe par un sous-groupe	
		invariant	14
		Quotient d'un espace vectoriel par un sous	
		espace vectoriel	15
ð	4	RELATIONS D'ORDRE	16
•		Exemples de relation d'ordre	17
		Parties majorées, majorants, maximum, bor-	
		ne supérieure	19
		Fonctions croissantes	20
		Droite achevée R	22
Ş	5	PUISSANCES. ENSEMBLES DENOMBRABLES	22
•		Puissances. Cardinaux	23
		Ensembles dénombrables	27
		Puissance du continu	2 9
		Nombres transcendants	30
		Hypothèse du continu	32
Ş	6	QUELQUES PRINCIPES DE LOGIQUE	32

TABLE

Chapitre II TOPOLOGIE

Ş	1	ESPACES METRIQUES. EXEMPLES ELEMENTAIRES	37
		Sphères, boules	38
		Espaces vectoriels normés	39
Ş	2	OUVERTS. FERMES. VOISINAGES. INTERIEUR.	
		FRONTIERE. ADHERENCE. SOUS-ENSEMBLE DENSES	41
		Parties ouvertes	41
		Parties fermées	43
		Voisinages	44
		Intérieur	46
		Extérieur	46
		Frontière	46
		Adhérence	47
		Sous-ensembles denses	48
		Sous-espace. Métrique induite	48
Ş	3	FONCTIONS CONTINUES. HOMEOMORPHISMES	5 0
		Homéomorphismes	52
Ş	4	ESPACES METRIQUES ET ESPACES TOPOLOGIQUES	54
		Topologie de la droite achevée $\overline{\mathbb{R}}$	58

3	b	SUITES. LIMITES. CONVERGENCES	59
§	6	TOPOLOGIE PRODUIT	62
		Suites convergentes dans un produit	64
		Fonctions continues de plusieurs variables	64
		Groupes topologiques, espaces vectoriels	
		topologiques	65
		Continuité partielle d'une fonction de deux	
		variables	66
§	7	ESPACES COMPACTS. PROPRIETES ELEMENTAIRES	67
		Espaces totalement compacts	73
		Point d'accumulation d'une suite	74
		Limite supérieure et limite inférieure	
		d'une suite réelle	78
§	8	PROPRIETES DES FONCTIONS CONTINUES SUR UN	
		ESPACE COMPACT	78
		Continuité uniforme	85
§	9	ESPACES CONNEXES	87
		Espaces connexes par arcs	90
§	10	COMPLEMENTS DE TOPOLOGIE GENERALE SUR LES	
		ESPACES CONNEXES	91
		Quelques applications de la notion de	
		connexité	92
		Existence et continuité de la fonction ré-	
		ciproque d'une fonction strictement monoto-	
		ne continue	92
§	11	ESPACES METRIQUES COMPLETS	94
		Prolongement des applications uniformément	
		continues	98

		Priorités particulières aux espaces	
		vectoriels topologiques de dimension finie	100
§	12	THEOREME DU POINT FIXE	10
Ş	7.3	THEORIE ELEMENTAIRE DES ESPACES VECTORIELS	
3	+	NORMES ET DES ESPACES DE BANACH	7.0
			104
		Noyau et image d'une application linéaire	
		Continue	106
		Produits d'espaces vectoriels normés	112
		Applications bilinéaires continues d'un	
		produit d'espace vectoriel normé dans un	
		espace vectoriel normé	114
		Applications multilinéaires continues	119
§	14	SERIES DANS LES ESPACES VECTORIELS NORMES	120
		Changement d'ordre des termes d'une série	123
		Produit de deux séries numériques. Effet	
		d'une application bilinéaire continue sur	
		deux séries	1 2 9
		Critère de semi -convergence	133
Ş	15	EXEMPLES USUELS D'ESPACES FONCTIONNELS;	
		CONVERGENCE SIMPLE ET UNIFORME	137
		Convergence uniforme d'une suite de	
		fonctions	141
		Autres emplois de l'expression : conver-	
		gence uniforme	143
		Espaces faisant intervenir à la fois la	
		structure de E et la structure de F	145
		Séries de fonctions à valeurs dans un es-	
		pace vectoriel normé	151

§	16	PRODUITS INFINIS DE NOMBRES OU DE FONCTIONS	
		REELS OU COMPLEXES	155
		Produit infini et série deslogarithmes	156
		Produits infinis de fonctions réelles ou	
		complexes	159
		Application à la fonction ζ de Riemann \dots	160

TABLE

Chapitre III CALCUL DIFFERENTIEL

167

186

192

§ 1 ESPACES AFFINES

	Définition	168
	Variétés affines	
	Annitostions linéaires	169
	Applications linéaires, applications affines	170
	Espaces affines normés	172
	Ensembles convexes dans les espaces affines	174
	Espaces vectoriels et affines euclidiens	175
	Espaces vectoriels et affines hermitiens	176
	Isomorphisme (ou semi-isomorphisme) d'un espace euclidien (ou hermitien) de dimension sint at	170
	de son dual	17 8
	Bases orthonormales	179
	Espaces euclidiens ou hermitiens généralisés	181
§ 2	FONCTIONS REELLES D'UNE VARIABLE REELLE CONTINUITE A DROITE, A GAUCHE	
	ONTINOTIE A DROTTE, A GAUCHE	1 84
	Discontinuités de première espèce. Fonctions réglées	
	réglées	184

Dérivée d'une fonction réelle de variable réelle

Fonctions convexes

§	3	DERIVEE D'UNE APPLICATION D'UN ESPACE AFFINE DANS UN AUTRE. VECTEUR DERIVE D'UNE FONCTION D'UNE VARIABLE SCALAIRE.	192 quarto
		Dérivée partielle suivant un vecteur	193
		Matrice dérivée. Déterminant jacobien	195
		Insuffisance de la dérivée suivant un vecteur .	19 6
		Dérivée totale ou application dérivée	197
		Interprétation géométrique de l'application dé- rivée : variété différentiable et variété linéaire tangente	201
		Gradient d'une fonction réelle sur un espace	
		euclidien	204
		Dérivée d'une application bilinéaire continue	209
		Fonctions dérivables, fonctions continûment dérivables	211
		Espaces de fonctions dérivables	212
Ş	4	THEOREME DES FONCTIONS COMPOSEES	214
\$	5	FORMULE DES ACCROISSEMENTS FINIS	232
Ş	6	DERIVEES D'ORDRE SUPERIEUR	241
		Dérivées successives	2 45
		Cas d'espaces produits : Dérivabilité totale et	
		dérivabilité partielle	250
		Espaces de fonctions m fois dérivables	251
		Dérivées d'un produit (formules de Leibnitz)	252
\$	7	FORMULE DE TAYLOR - MAXIMA ET MINIMA Applications de la formule de Taylor au calcul	257
		de dérivées de fonctions	260

Applications à l'étude des maxima et minima ...

269

§ 8	THEOREME DES FONCTIONS IMPLICITES	277
	Existence de la fonction implicite	278
	Dérivabilité de la fonction implicite	283
	Fonction réciproque comme fonction implicite	294
	Calcul des dérivées d'ordre supérieur d'une	,
	fonction implicite	299
	Technique du changement de variables et du changement de fonction	303
§ 9	VARIETES DIFFERENTIABLES	305
	Définition d'une variété par une représentation	
	parametrique	3 06
	Variétés réelles et variétés complexes	318
	Variétés abstraites	3 19
	Espace vectoriel tangent en un point d'une va- riété d'un espace affine E de dimension N	323
	Espace vectoriel tangent en un point d'une	
	variété abstraite	327
	Théorème du rang constant	327 ter
	Fonctions dépendantes et fonctions indépendantes	332
	Variétés singulières ou paramétriques	334
§ 10	MAXIMA ET MINIMA LIES	33 6
	Manière pratique de procéder pour trouver un maximum ou un minimum relatif lié	33 8
	Applications de la théorie des maxima liés; inégalités de Hölder et Minkowski	341
8 44		-
§ 11	CALCUL DES VARIATIONS	3 50 ter
	Position du problème	3 50 ter
	Dérivabilité de J	<i>3</i> 53
	Condition nécessaire d'extrémum	359
	Cas simple d'intégrabilité élémentaire des	
	équations d'Euler	3 63

Equation des géodésiques sur une surface	370
Problèmes d'extrêma liés	374
Effets d'un changement de variables	3 76
Extrémités variables. Conditions de transversabilité	3 82
Equations canoniques d'Hamilton	3 89
Applications à la Mécanique	392

•