Contents

	No	xi	
1.	Introduction		1
	1.1	Fractional parts of a polynomial	1
	1.2	Vinogradov's methods	4
		Simultaneous approximations	5
		Functions of many variables	6
		Forms of odd degree	8
	1.6	Forms of even degree	9
2.	For	12	
	2.1	Vinogradov's auxiliary function	12
		Construction of trigonometric polynomials	14
		Lower bounds for trigonometric sums	19
3.	He	22	
	3.1	The basic technique	22
	3.2	Lemmas on reciprocal sums	24
	3.3	•	28
		A simultaneous approximation result	30
		Weyl's inequality	34
4.	Vii	38	
	4.1	Approximation to the coefficients $\alpha_1, \ldots, \alpha_k$	38
	4.2	The final coefficient lemma	42
	4.3	Application to fractional parts	46
5.	Th	49	
	5.1	More about difference operators	49
	5.2	Finding out about one more coefficient	51
	5.3	Small values of $f(n)$ modulo one	58
6.	The	60	
	6.1	Counting solutions of an equation	60
		A theorem about αn^k	65
	6.3	Conclusion	68

7.	Sch	nidt's lattice method	69
	7.1	Introduction	69
	7.2	Successive minima	71
	7.3	An auxiliary function	72
		Rational approximation to inner products	75
		A determinant argument	77
	7.6	Lattices in subspaces	81
	7.7	Proof of Theorem 7.2	84
8.	The	lattice method for polynomials of arbitrary degree	88
	8.1	An inductive strategy	88
		Lemmas on exponential sums	90
		An alternative lemma	93 97
	8.4	Proof of Theorem 8.2	100
	8.5	More about exponential sums: monomials	100
9.	Qua	adratic forms	106
	9.1	Self-adjoint linear forms	106
		Danicic's theorem	109
		Small solutions of quadratic congruences	111
	9.4	Fractional parts of quadratic forms again	122
10.	Sim	ultaneous approximation for quadratic forms and additive forms	127
	10.1	Introduction	127
		Proof of Theorem 10.2	128
	10.3	Application to a set of quadratic forms	133
11.	Nonnegative solutions of additive equations		136
		A direct application of the circle method	136
		An inductive argument	143
		Two cases	144
	11.4	The circle method again	147
	11.5	The major arcs	149
	11.6	The singular integral and the singular series	151
12.	Sm	all solutions of additive congruences	153
	12.1	An inductive assertion	153
	12.2	Division into two cases	156
	12.3	Application of a 'discrete' circle method	161
13.	Small solutions of additive equations of odd degree		
		Preliminary reductions	164
	13.2	The circle method	167
		The minor arcs: a further analysis	169
	13.4	The major arcs	172
	13.5	Conclusion	173

		Contents	ix
14.	Dio	phantine inequalities for forms of odd degree	175
	14.1	Multilinear forms	175
		Additive forms	178
	14.3	The Davenport-Heilbronn circle method	180
		An induction on the degree	186
		The case of a single form	189
		Conclusion	194
15.	Exp	onential sums: forms with integer coefficients	195
	15.1		195
		Algebraic geometry	199
		Manifolds \mathcal{M} , and invariants g	200
		Weyl's inequality	202
		Predominantly linear exponential sums	206
		Exponential sums and multilinear inequalities	209
	15.7	•	211
		Systems of forms	215
16.	The	invariants g and h	219
	16.1	Invariants $g_{\mathbb{C}}$ and $h_{\mathbb{C}}$	219
		The arithmetical case	221
		Simple points	222
		Higher derivatives	224
		Operators \mathcal{D}_{r}	225
		Proof of Proposition 16.1: beginning	226
		Completion of the proof of Proposition 16.1	229
		Proof of Proposition 16.2	233
17.	Exp	onential sums: polynomials on a finite group	237
	17 1	Introduction	237
		Weyl's inequality for groups	241
	17.3		244
	17.4		246
		Proof of Theorems 17.1 and 17.2	249
		Proof of Theorem 17.3	250
	17.7	Proof of Theorem 17.4	251
	17.8	_	252
18.	. Small solutions of congruences to general modulus		256
	18.1	Introduction	256
		Estimation of exponential sums	258
		Proof of Proposition 18.1	259
	18.4		262
Re	267		
Index			273