CONTENTS

INTRO	DUCTION	III
CHAPT	ER 1 : COXETER GROUPS, HECKE ALGEBRAS AND THEIR REPRESENTATIONS	1
§1.1	Coxeter groups and Weyl groups	1
§1.2	Hecke algebras	5
§1.3	W-graphs	6
§1.4	Kazhdan-Lusztig polynomials	7
§1.5	Cells of a Coxeter group	13
§ 1.6	The star operations in the sets $v_L(s,t)$, $v_R(s,t)$	15
§1.7	Examples of cells	19
CHAPT	ER 2 : APPLICATIONS OF KAZHDAN-LUSZTIG THEORY	32
§2 .1	φ-cells of a Coxeter group	33
§ 2.2	The canonical isomorphism between $\Phi[X^{\frac{1}{2}}]W$ and $H_{\Phi[X^{\frac{1}{2}}]}$	36
§2.3	Representations of the Weyl group	42
§ 2.4	Kazhdan-Lusztig conjecture for composition factors of Verma modules	44
§2.5	Classification of primitive ideals in universal enveloping algebras of semisimple Lie algebras	46
§2.6	Modular representation theory of algebraic groups and related finite groups	51
§2.7	Weight multiplicities and Kazhdan-Lusztig polynomials	54
CHAPT	ER 3 : GEOMETRIC INTERPRETATIONS OF THE KAZHDAN-LUSZTIG POLYNOMIALS	60
§3 .1	Complexes of sheaves on an algebraic variety	60
§ 3.2	The intersection chain complex	62
§ 3.3	The construction of the intersection chain complex	62
§ 3.4	The case of Schubert varieties	63
§3.5	The case of the unipotent variety	65
CHAPT	ER 4 : THE ALGEBRAIC DESCRIPTIONS OF THE AFFINE WEYL GROUPS An OF	
	TYPE \tilde{A}_{n-1} , $n > 2$	66
§ 4.1	Three algebraic descriptions of the affine Weyl group $A_{\mathbf{n}}$	67
§ 4.2	The functions $\ell(w)$, $\ell(w)$, $R(w)$ on the affine Weyl group A_n	68
§ 4.3	The subsets $\mathcal{D}_{L}(s_{t})$, $\mathcal{D}_{R}(s_{t})$ of the affine Weyl group A_{n} , $n > 3$	72
§ 4.4	Some definitions and terminology	72

CHAPTER 5 : THE PARTITION OF n ASSOCIATED WITH AN ELEMENT OF THE AFFINE WEYL GROUP ${\sf A}_{\sf n}$	77
CHAPTER 6 : A GEOMETRICAL DESCRIPTION OF THE AFFINE WEYL GROUP An	84
$\S6.1$ The description of A_n as a set of alcoves	84
$\S6.2$ The relation between two descriptions of A_n	91
§6.3 The map $\sigma: A_n \to A_n$ defined in geometrical terms	95
CHAPTER 7 : ADMISSIBLE SIGN TYPES OF RANK n	99
§7.1 Admissible sign types and their equivalence relation	99
§7.2 Connected sets of A_n and cells of S	103
§7.3 The cardinality of \hat{S}	104
CHAPTER 8 : ITERATED STAR OPERATIONS AND INTERCHANGING OPERATIONS ON BLOCKS	114
§8.1 Iterated star operations	115
§8.2 Some results on iterated star operations	117
58.3 The interchanging operations $\rho_{A_2}^{A_1}$ and $\theta_{A_1}^{A_2}$	118
§8.4 More general interchanging operations	123
CHAPTER 9 : THE SUBSET $\sigma^{-1}(\lambda)$ OF THE AFFINE WEYL GROUP $\mathbf{A}_{\mathbf{n}}$	
§9.1 Two simple lemmas on iterated star operations	129
§9.2 The subset F of the affine Weyl group A _n	130
§9.3 The subset H_{λ} of $\sigma^{-1}(\lambda)$	134
§9.2 The subset F of the affine Weyl group A_n §9.3 The subset H_λ of $\sigma^{-1}(\lambda)$ §9.4 $\sigma^{-1}(\lambda)$ is a union of RL-equivalence classes	144
CHAPTER 10 : THE SET N_{λ} OF NORMALIZED ELEMENTS OF $\sigma^{-1}(\lambda)$	146
CHAPTER 11 : THE ORBIT SPACE \widetilde{A}_{n} OF THE AFFINE WEYL GROUP A_{n}	152
§11.1 Definition of \widetilde{A}_n	152
§11.2 The map $\eta: A_n \to \widetilde{A}_n$	153
§11.3 The partition associated with an element of \widetilde{A}_n	153
§11.4 The functions $\ell(\widetilde{w})$, $\ell(\widetilde{w})$, $R(\widetilde{w})$ and star operations in \widetilde{A}_n	154
§11.5 Interchanging operations on blocks in \tilde{A}_n	155
§11.6 Totally ordered sets with a distance function	158
§11.7 Deletion operations in \tilde{A}_n	161
§11.8 Commutativity of interchanging operations with deletion	162
§11.9 Commutativity of interchanging operations with the map $\tilde{\eta}$	164
CHAPTER 12 : THE SEQUENCE $\xi(\mathbf{w,k})$ BEGINNING WITH AN ELEMENT OF \mathbf{N}_{λ}	166
§12.1 A description of N_{λ}	166
§12.2 A sequence $\xi(\mathbf{w,r})$ beginning with an element of \mathbf{H}_{λ}	166
§12.3 The deletion map $d(\lambda,m)$	168

§12.4 The subset $\tilde{H}_{\lambda,k}$ of $\tilde{\sigma}^{-1}(\lambda)$	171	
§12.5 The sequence $\xi(\widetilde{w},k)$ beginning with $\widetilde{w} \in \widetilde{N}_{\lambda}$ §12.6 The sequence $\xi(w,k)$ beginning with $w \in N_{\lambda}$ §12.7 Antichains §12.8 The D-function	178 181 182 190	
CHAPTER 13: RAISING OPERATIONS ON LAYERS §13.1 Reflective pairs §13.2 Raising operations on layers §13.3 Proof of Proposition 13.2.3 when $1 < u < \lambda_r$ §13.4 Proof of Proposition 13.2.3 when $\lambda_{k+1} < u < \lambda_k$ and $1 < k < r$	202 202 205 208 215	
S14.1 The map T from N_{λ} to the set of λ -tabloids \$14.2 The set \bar{N}_{λ} of principal normalized elements \$14.3 The subset X_{λ} of N_{λ} \$14.4 The number of left cells in $\sigma^{-1}(\lambda)$	222 222 224 228 229	
CHAPTER 15 : $\sigma^{-1}(\lambda)$ IS AN RL-EQUIVALENCE CLASS OF A CHAPTER 16 : LEFT CELLS ARE CHARACTERIZED BY THE GENERALIZED RIGHT τ -INVARIANT		
§16.1 Left cells are characterized by the generalized right τ -invariant §16.2 The standard parabolic subgroup P_n	236 237	
CHAPTER 17 : THE TWO-SIDED CELLS OF THE AFFINE WEYL GROUP A	243	
S18.1 The commutativity between a left star operation and a right star operation §18.2 Connectedness of cells and other equivalence classes of A _n §18.3 The intersection of a left cell with a right cell in A _n	247 247 249 253	
CHAPTER 19 : SOME SPECIAL KINDS OF SIGN TYPES §19.1 Coxeter sign types and generalized tabloids	256 257	
\$19.2 Three maps $\hat{\sigma}$, $\hat{\tau}$, $\hat{\tau}$ and their relations \$19.3 Two kinds of actions on the set \hat{c} \$19.4 The map $\hat{\tau}:A_n \rightarrow \hat{c}$ \$19.5 Dominant sign types and dominant tabloids \$19.6 Special sign types and special tabloids	259 260 262 265 267	

CHAPTER 20 : THE INSERTING ALGORITHM ON THE SET C	273
\$20.1 The n-circle and the sets $H_{\gamma}(X)$, $L_{\gamma}(X)$ \$20.2 The inserting algorithm on the set C	273 280
CHAPTER 21 : THE RESTRICTION OF THE MAP \hat{T} ON P_n	285
§21.1 Separated entry sets and the operation $w \xrightarrow{\star (i+1,\alpha,m)} y$	285
§21.2 Reformulation of the Robinson-Schensted algorithm	289
§21.3 The image of P_n under the map \hat{T}	291
REFERENCES	
INDEX OF NOTATION	
INDEX	303