Contents

Preface vii

Preliminaries and notation ix

§1.	Stokes'	theorem	in	the	plane	1
------------	---------	---------	----	-----	-------	---

- 1.1. Proof of Stokes' theorem in the plane 1
- 1.2. Looking towards generalizations 6

§2. Basic concepts 8

- 2.1. The objects to be integrated: alternating multilinear differential forms 8
 - 2.1.A. Notation. Exposition of the problem 8
 - B. The content of a parallelotop 10
 - C. Orientation 12
 - D. Orientation of the boundary of an oriented parallelotop 13
 - E. Alternating linear forms in $V^{(n)}$ 15
 - F. Decomposition of a k-form into components 18
 - G. C^1 -mappings from \mathbb{R}^n to \mathbb{R}^k . Alternating multilinear differential forms in \mathbb{R}^n 21
- 2.2. Domains of integration: smooth pieces of space in \mathbb{R}^n with almost smooth boundary 24
 - 2.2.A. Almost smooth pieces of space and their content 24
 - B. The tangential spaces of an almost smooth piece 27
 - C. Smooth pieces of space with almost smooth boundary 29
 - D. Oriented pieces of space 31
 - E. Orientation of the boundary of an oriented piece of space 32
- 2.3. Integrals and differential of a differential form 33
 - 2.3.A. The integral of a k-form in \mathbb{R}^n over an oriented k-dimensional piece. The pullback of a form 33
 - B. Forms defined on a k-dimensional piece in \mathbb{R}^n and their integrals 36

Contents vi

D. Oriented manifolds

5.3.A. Proof of the theorem

5.3. Stokes' theorem on a manifold

Solutions of the exercises 101

References 109

111

Index

5.2. Differential forms on a manifold and their integrals

B. A result for exact forms

	2.3.C. The integral of a $(k-1)$ -form over the boundary of a k -dimensional piece 38
	D. The differential of a $(k-1)$ -form 39
	E. Rolle's lemma and the mean-value theorem for differen-
	tial forms 44
	F. Approximation of integrals by polytopal approximation
	of the domains of integration 46
§3.	Stokes' theorem for pieces of space 54
	3.1. A preliminary form of Stokes' theorem and Poincaré's
	lemma 54
	3.2. Stokes' theorem for k-dimensional pieces in \mathbb{R}^k 55
	3.2.A. A lemma 55
	B. Proof of Stokes' theorem for a k-dimensional piece
	in \mathbb{R}^k 58
	C. Inferences 60
	D. Gauss' divergence theorem 61
	3.3. Stokes' theorem for a k-dimensional piece $P_n^{(k)}$ in \mathbb{R}^n 63
	3.3.A. ω defined on $N_n^{(k)} \supset P_n^{(k)}$ 63
	B. ω defined in $D^{(n)} \supset P_n^{(k)}$ 64
	C. Inferences 70
§4.	The calculus of alternating multilinear forms 72
	4.1. The exterior product of alternating forms 72
	4.2. The differential of a differential form 76
	4.3. The pullback in the calculus of differential forms 79
۳.	Stokes' theorem on manifolds 82
85.	
	5.1. The concept of manifold 82 5.1. A Manifolds in a Cartesian space 82
	3.1.71. Mainfolds in a Cartesian space
	B. Abstract manifolds 85
	C. Submanifolds 89

92

97

97

93