TABLE OF CONTENTS

Editor's Preface	X111
Author's Preface	xv
PART I: POINT TRANSFORMATIONS	
INTRODUCTORY CHAPTER: GROUP AND DIFFERENTIAL	
EQUATIONS	1
§ 1. Continuous groups	1
1.1 Topological groups	1
1.2 Lie groups	2
1.3 Local groups	4
1.4 Local Lie groups	5
§ 2. Lie algebras	6
2.1 Definitions	6
2.2 Lie algebras and local Lie groups2.3 Inner automorphisms	10
2.3 Inner automorphisms	12
2.4 The Levi-Mal'cev theorem	14
§ 3. Transformation groups	16
3.1 Local transformation groups	16
3.2 Lie's equation	17
3.3 Invariants	19
3.4 Invariant manifolds	20
§ 4. Invariant differential equations	23
4.1 Prolongation of point transformation	ıs 23
4.2 The defining equation	27
4.3 Invariant and partially invariant	
solutions	29
4.4 The method of invariant majorants	32

٠	٠	
1	1	1

TRANSFORMATION GROUPS

§	5.	Exam	ples	40
		5.1 5.2	Let $x \in \mathbb{R}^n$, $a \in \mathbb{R}$ Let us illustrate the algorithm for computing the group admitted by a differential equation by means of	40
		5.3	the example of a second-order equation	42 45
		J.4	of a polytropic gas	48
CI	IAPTI	ER 1:	MOTIONS IN RIEMANNIAN SPACES	53
§	6.	The	general group of motions	53
			Local Riemannian manifolds	53
			Arbitrary motions in V_n The defect of a group of motions	58
		6.4	in V _n Invariant family of spaces	62 64
§	7.	Exam	ples of motions	67
		7.1	Isometries	67
		7.2	Conformal motions	68
		7.3	Motions with $\delta = 2$	72
			Nonconformal motions with $\delta = 1$	75
			Motions with given invariants	78
§	8.	Riem	annian spaces with nontrivial	
		conf	ormal group	81
			Conformally related spaces	81
			Spaces of constant curvature	85
			Conformally-flat spaces	88
			Spaces with definite metric	90
		8.5	Lorentzian spaces	92
§	9.	Grou	p analysis of Einstein's equations	97
		9.1 9.2	Harmonic coordinates The group admitted by	97
		9.4		101
		0 3	Einstein's equations	101
			The Lie-Vessiot decomposition	104
		9.4	Exact solutions	100

10.1 Preliminaries 11.2 Linear equations in S_n 11.3 Semilinear equations in S_n 11.4 Equations admitting an isometry group of maximal order 10.5 The wave equation in Lorentzian spaces 12.5 Spaces	7 1 7 8
10.2 Linear equations in S_n 11 10.3 Semilinear equations in S_n 12 10.4 Equations admitting an isometry group of maximal order 12 10.5 The wave equation in Lorentzian	7 1 7 8
10.3 Semilinear equations in S_n 127 10.4 Equations admitting an isometry group of maximal order 127 10.5 The wave equation in Lorentzian	1 7 8
10.4 Equations admitting an isometry group of maximal order 12:10.5 The wave equation in Lorentzian	7 8 3
group of maximal order 12: 10.5 The wave equation in Lorentzian	8
10.5 The wave equation in Lorentzian	8
	3
spaces 128	3
CHAPTER 2: A GROUP-THEORETICAL APPROACH TO THE HUYGENS PRINCIPLE 13:	
HOIGENS TRINGILES 13.	
§ 11. General considerations and some history	-
of the problem 133	3
11.1 Hadamard's problem 133	3
11.2 Hadamard's criterion 135	5
11.3 The Mathisson-Asgeirsson Theorem 136	6
11.4 The necessary conditions of	
Günther and McLenaghan 13	9
11.5 The Lagnese-Stellmacher	•
transformation 143	3
11.6 The present state of the art and	
generalizations of Hadamard's	
problem 148	8
P20020	_
§ 12. The wave equation in V_{μ} 150	0
4	
12.1 Computation of the geodesic distance	
in a plane-wave metric 150	0
12.2 Conformal invariance and the	
Huygens principle 15	7
12.3 The solution of the Cauchy problem 16.	
12.4 The case of a trivial conformal	•
	1
group 1/	•
§ 13. The Huygens principle in V_{n+1} 17.	3
13.1 Preliminary analysis of the	
solution 17	3
13.2 The Fourier transform of the	
Bessel function $J_0(a \mu)$ 173	8

§

	13.3 13.4 13.5		181 185 188
PART	II: 1	TANGENT TRANSFORMATIONS	
СНАРТ	ER 3:	INTRODUCTION TO THE THEORY OF LIE-BÄCKLUND GROUPS	190
٠.,			170
9 14.	Heuri	stic considerations	190
	14.1	Contact transformations	190
	14.2 14.3	Finite-order tangent transformations	195
			202
	14.4 14.5	Bäcklund transformations. Examples The concept of infinite-order	205
		tangent transformation	211
§ 15.	Forma	al groups	213
	15.1	Lie's equation for formal	
		one-parameter groups	213
	15.2		219
§ 16.	One-p	arameter groups of Lie-Bäcklund	
	trans	formations	222
	16.1	Definition and the infinitesimal	
		criterion	222
	16.2	Lie-Bäcklund operators. Canonical	
		operators	229
	16.3	Examples	232
§ 17.	Invar	iant differential manifolds	235
	17.1	A criterion of invariance	235
	17.2	Examples of solutions of the	
		defining equation	239
	17.3	Ordinary differential equations	242
	17.4	The isomorphism theorem	246
	17.5	Linearization by means of	
		Lie-Bäcklund transformations	240

C	нарт	ER 4:	EQUATIONS WITH INFINITE LIE-BÄCKLUND GROUPS	250
			LIE-BACKLUND GROUPS	253
§	18.	Typi	cal examples	253
		18.1	· · · · · · · · · · · · · · · · · · ·	253
			The Korteweg-de Vries equation	258
			A fifth-order equation	264
		18.4	The wave equation	266
§	19.	Evolu	ution equations	267
		19.1	The algebra A _F	267
		19.2		273
		19.3		275
			Differential substitutions	282
		19.5	1	
			by ordinary differential equations	286
§	20.		vsis of second- and third-order	
		evolu	ition equations	288
		20.1	m = 2	288
			m = 3	295
		20.3	Two systems of nonlinear equations	301
§	21.	The e	equation $F(x,y,z,p,q,r,s,t) = 0$	303
		21.1	Analysis of the general case	303
		21.2	Classification of the	
			equations $s = F(z)$	307
		21.3	A system of two nonlinear	
			equations	311
CF	IAPTI	ER 5:	CONSERVATION LAWS	314
§	22.	Funda	mental theorems	314
		22.1	The Noether identity	314
		22.2		315
		22.3	Invariance on the extremals	317
		22.4	The action of the adjoint algebra	319
		22.5		
			equations	321

v	٦.	•
Λ	+	1

TABLE OF CONTENTS

9	23.	Examp	otes	323
		23.1	Motion in de Sitter space	323
		23.2	The equation $u_{tt} + \Delta^2 u = 0$	326
			The non-steady-state transonic	
			gas flow	327
		23.4	Short waves	331
§	24.	The L	orentz group	333
		24.1	Conservation laws in	333
			relativistic mechanics	
		24.2	A nonlinear wave equation	336
		24.3	Dirac equation	338
§	25. The Galilean group		343	
		25. 1	Motion of a particle	343
			Perfect gas	347
		25.3	Incompressible fluid	356
		25.4	Shallow-water flow	360
		25.5	A basis of conservation laws	
			for the K-dV equation	361
RI	REFERENCES			364
I	MEX.			385