CONTENTS

Preface xv
Notations and Commonly Used Abbreviations xix

Chapter 1. An Introduction to the Homotopy Groups of Spheres

1. Classical Theorems Old and New 3

2. Methods of Computing $\pi(S^n)$ 7

3. The Adams–Novikov E_2-Term,
 Formal Group Laws, and the Greek Letter Construction 16

4. More Formal Group Law Theory, BP-Theory, Morava’s Point of View, and the Chromatic Spectral Sequence 23

5. Unstable Homotopy Groups and the EHP Spectral Sequence 29

Chapter 2. Setting Up the Adams Spectral Sequence

1. The Classical Adams Spectral Sequence 48

2. The Adams Spectral Sequence Based on a Generalized Homology Theory 57

3. The Smash Product Pairing and the Generalized Connecting Homomorphism 62

The smash product induces a pairing in the Adams spectral sequence. A map that is trivial in homology induces a map of spectral sequences which raises filtration. The relation between the connecting homomorphism in Ext and the boundary map in homotopy.

Chapter 3. The Classical Adams Spectral Sequence

1. The Steenrod Algebra and Some Easy Calculations 69

2. The May Spectral Sequence

May's filtration of A_*. Nonassociativity of May's E_1-term at odd primes and a modification of his SS that avoids this problem. Computations at $p = 2$ in dimensions ≤ 13. Computations with the subalgebra $A(2)$ at $p = 2$.

3. The Lambda Algebra

4. Some General Properties of Ext

Exts for $s \leq 3$. Behavior of elements in Ext2: results of Browder, Mahowald, Ravenel, and Cohen and Goerss. Adams vanishing line (slope $\frac{1}{4}$ for $p = 2$). Periodicity near the vanishing line (above the $\frac{1}{4}$ line for $p = 2$). Elements not annihilated by any iterated periodicity operator and their relation to im J. An elementary proof that most of these elements are nontrivial.

5. Survey and Further Reading

Exotic cobordism theories. Decreasing filtrations of A_* and the resulting spectral sequences. Application to MSP. Mahowald's generalizations of Λ. v_n-periodicity in the ASS. Selected references to related work.

Chapter 4. BP-Theory and the Adams - Novikov Spectral Sequence

1. Quillen's Theorem and the Structure of $BP_*(BP)$

2. A Survey of BP-Theory

3. Some Calculations in $BP_*(BP)$

formal group law. Formulas for the coproduct and conjugation in $BP_\ast(BP)$. A filtration of $BP_\ast(BP)/I_n$ and the structure of the associated bigraded object.

4. Beginning Calculations with the Adams–Novikov Spectral Sequence

Chapter 5. The Chromatic Spectral Sequence

1. The Algebraic Construction

Greek letter elements and generalizations. The chromatic resolution, spectral sequence, and cobar complex. The Morava stabilizer algebra $\Sigma(n)$. The change of rings theorem. The Morava vanishing theorem. Signs of Greek letter elements. Computations with β_1. Decomposability of γ_1. Chromatic differentials at $p = 2$. Divisibility of $\alpha_1\beta_p$.

2. $\text{Ext}^1(BP_\ast/I_n)$ and Hopf Invariant One

$\text{Ext}^0(BP_\ast). Ext(M^1_0). Ext^1(BP_\ast).$ Hopf invariant one elements. The Miller–Wilson calculation of $\text{Ext}^1(BP_\ast/I_n)$.

3. $\text{Ext}(M^1)$ and the J-Homomorphism

$\text{Ext}(M^1).$ Relation to $\text{im } J$. Patterns of differentials at $p = 2$. Computations with the mod (2) Moore spectrum.

4. Ext^2 and the Thom Reduction

Results of Miller, Ravenel, and Wilson ($p > 2$) and Shimomura ($p = 2$) on $\text{Ext}^2(BP_\ast)$. Behavior of the Thom reduction map. Arf invariant differentials at $p > 2$. Results of Mahowald and those of Cohen and Goerss.

5. Periodic Families in Ext^2

Smith construction of β_\ast. Obstructions at $p = 3$. Results of Davis and Mahowald, Oka, Smith, and Zahler on permanent cycles in Ext^2. Decomposables in Ext^2.

6. Elements in Ext^3 and Beyond

Products of alphas and betas in Ext^3. Products of betas in Ext^4. A possible obstruction to the existence of $V(4)$.
Chapter 6. Morava Stabilizer Algebras

1. The Change-of-Rings Isomorphism 220

2. The Structure of $\Sigma(n)$ 226

Relation to the group ring for S_n. Recovering the grading via an eigenspace decomposition. A matrix representation of S_n. A splitting of S_n when $p \nmid n$. Poincaré duality and periodic cohomology of S_n.

3. The Cohomology of $\Sigma(n)$ 231

A May filtration of $\Sigma(n)$ and the May SS. The open subgroup theorem. Cohomology of some associated Lie algebras. H^1 and H^2. $H_{\ast}(S(n))$ for $n = 1, 2, 3$.

4. The Odd Primary Kervaire Invariant Elements 244

The nonexistence of certain elements and spectra. Detecting elements with the cohomology of $\mathbb{Z}/(p)$. Differentials in the ASS.

5. The Spectra $T(n)$ 253

A splitting theorem for certain Thom spectra. Application of the open subgroup theorem. Ext0 and Ext1.

Chapter 7. Computing Stable Homotopy Groups with the Adams–Novikov Spectral Sequence

1. The Method of Infinite Descent 258

2. The Complex $C_{1,1}$ 262

Poincaré series and weak injectives. The structure of $C_{1,1}$.

3. The Homotopy Groups of a Complex with p Cells 268

Quillen operations and Ext0. A useful SES (7.3.5). Another SS (7.3.8). Differentials (7.3.11). A paradigmatic SS involving $P(1)$.

4. The "Algorithm" and Computations at $p = 3$

The SS for extracting $\pi_*(S^0)$ from $\pi_*(X)$. The ABC Theorem for $\pi_*(X)$. Table showing ABC at $p = 5$. A computational procedure. The input for $p = 3$. The output through dimension 106.

5. Computations for $p = 5$

$d_{33}(\gamma_3) = \beta|\beta^8$ at $p = 5$ and $V(3)$ does not exist. A conjecture for larger primes. The input for $p = 5$. Computing the output.

Appendix 1. Hopf Algebras and Hopf Algebroids

1. Basic Definitions

2. Homological Algebra

3. Some Spectral Sequences

4. Massey Products

5. Algebraic Steenrod Operations

Appendix 2. **Formal Group Laws**

1. Universal Formal Group Laws and Strict Isomorphisms 355

2. Classification and Endomorphism Rings 369

 Hazewinkel’s and Araki’s generators. The right unit formula. The height of a formal group law. Classification in characteristic p. Finite fields, Witt rings, and division algebras. The endomorphism ring of height n formal group law.

Appendix 3. **Tables of Homotopy Groups of Spheres** 380

References 395

Index 407