0	NOTATION-CONVENTIONS-HOW TO USE THIS BOOK	
1	INTRODUCTION	Ç
	The Rodrigues programme	18
	Rotations by 2π	22
	Spinor representations	24
2		
	MATRICES, AND GROUPS	29
	1 Symmetry operators in configuration space	29
	Description of the point-symmetry operations	30
	Specification of the symmetry operations	32
	Composition of symmetry operations	33
	2 Eigenvectors of configuration space operators	35
	3 Symmetry operators in function space	36
	4 Matrices and operators	38
	5 Groups	42
	6 All about matrix properties	50
	Orthogonal matrices	52
	Unitary matrices	55
	Hermitian and skew-Hermitian matrices	56
	Supermatrices and the direct product	56
	Commutation of matrices	58
	Matrix functions	58
	7 Quantal symmetry. Observables and infinitesimal operators	60
	Symmetries and observables	62
	Infinitesimal operators and observables	63
3	A PRIMER ON ROTATIONS AND ROTATION	
_	MATRICES	65
	1 Euler angles	66
	Rotation matrices in terms of the Euler angles	69
	2 Angle and axis of an orthogonal matrix	70
	3 The matrix of a rotation $R(\phi \mathbf{n})$	73
	4 Euler angles in terms of the angle and axis of rotation	75
	5 A rotation in terms of rotations about orthogonal axes	76
	6 Comments on the parametrization of rotations	79

4	ROTATIONS AND ANGULAR MOMENTUM	80
	1 Infinitesimal rotations	80 82
	2 The infinitesimal generator: angular momentum	84
	3 Rotation matrices	85
	4 Commutation	86
	5 Shift operators	
	6 The eigenfunctions of I_z	87
	7 The irreducible bases for SO(3)	90
	Spherical and solid harmonics	93
	8 The Condon and Shortley convention	94
	9 Applications. Matrices for $j = 1$ and $j = \frac{1}{2}$ (Pauli matrices)	96
	The Pauli matrices, $j = \frac{1}{2}$	98
5	TENSOR BASES: INTRODUCTION TO SPINORS	99
	1 Vectors and spherical vectors	100
	2 Tensor bases and tensor products	103
	Symmetrization of tensors	104
	3 Half-integral bases: spinors	106
_		
6	THE BILINEAR TRANSFORMATION:	
	INTRODUCTION TO SU(2), SU'(2), AND ROTATIONS. MORE ABOUT SPINORS	109
	1 The bilinear transformation	110
	The inverse	111
	2 Special unitary matrices. The SU(2) group	112
	3 Rotations and SU(2): a first contact	113
	4 Binary rotations as the group generators	116
	5 Do we have a representation of SO(3)?	117
	6 SU(2) plus the inversion: SU'(2)	118
	Inversion and parity	120
	7 Spinors and their invariants	121
	7 Spinors and their invariants	121
7	ROTATIONS AND SU(2). THE STEREOGRAPHIC	
	PROJECTION	124
	1 The stereographic projection	126
	2 Geometry and coordinates of the projection	127
	3 The homomorphism between SU(2) and SO(3)	128
	The spinor components	132
8	PROJECTIVE REPRESENTATIONS	135
~	1 The group \mathbf{D}_2 and its SU(2) matrices. Definition of projec-	
	tive representations	135
	2 Bases of the projective representations	138
	Bases and energy levels	140
	3 The factor system	142

	4 The representations Characters	144 144
		145
	5 Direct products of representations 6 The covering group	146
	Remarks	149
	Remarks	145
9	THE GEOMETRY OF ROTATIONS	15
	1 The unit sphere and the rotation poles	152
	Conjugate poles	154
	Improper rotations	154
	2 The Euler construction	155
	3 Spherical trigonometry revisited	157
	4 The Euler construction in formulae. The Euler-Rodrigues	
	parameters	159
	Remarks	160
	5 The conical transformation	162
10	THE TOPOLOGY OF ROTATIONS	164
	1 The parametric ball	165
	2 Paths	167
	3 Programme: continuity	170
	4 Homotopy	170
	5 The projective factors	174
	6 Operations, turns, and connectivity	174
11	THE SPINOR REPRESENTATIONS	17
	1 Determination of the projective factors	177
	2 The intertwining theorem	179
	3 The character theorem	182
	4 The irreducible representations	182
	5 The projective factors from the Euler-Rodrigues parameters	183
	6 Inverses and conjugates in the Euler-Rodrigues parametri-	
	zation	187
	Conjugation and the choice of the positive hemisphere	189
	7 The character theorem proved in the Euler-Rodrigues	100
	parametrization	190
	8 The SU(2) representation of SO(3)	19
	9 C_i and the irreducible representations of O(3). The SU'(2)	
	representation of O(3)	194
	The representations of \mathbf{C}_i	194
	The irreducible representations of O(3)	196
	The SU'(2) representation of O(3)	19
	The factor system for O(3)	197
	10 Improper point groups	199

12	THE ALGEBRA OF ROTATIONS: QUATERNIONS	201
	1 An entertainment on binary rotations	201
	2 The definition of quaternions	202
	3 Inversion of quaternions. Characterization of their scalar	
	and vector parts	205
	4 Conjugate and normalized quaternions. Inverse quaternions	206
	5 The quaternion units	209
	6 SO(3), SU(2), and quaternions	211
	7 Exponential form of quaternions	213
	8 The conical transformation	214
	9 The rectangular transformation	217
	10 Quaternion algebra and the Clifford algebra	219
	In praise of mirrors	221
	11 Applications: angle and axis of rotation and SU(2) matrices	
	in terms of Euler angles	223
12	DOUBLE CROUPS	225
13	DOUBLE GROUPS 1 Introduction and example	226
	2 The double group in the quaternion parametrization	230
		231
	3 Notation and operational rules	233
	Intertwining 4 Class structure: Opechowski Theorem	235
	4 Class structure. Opechowski Theorem	255
14	THE IRREDUCIBLE REPRESENTATIONS OF	
	SO(3)	237
	1 More about spinor bases	237
	2 The irreducible representation	241
	3 The bases of the representations	246
15	EXAMPLES AND APPLICATIONS	248
13	1 The choice of the positive hemisphere	248
	2 Parametrization of the group elements for \mathbf{D}_6 , \mathbf{D}_3 , \mathbf{C}_{3v} .	
	Multiplication tables and factor systems	251
	3 The standard representation	253
	4 The irreducible projective and vector representations	255
	The representations of \mathbf{D}_3	259
	The representations of \mathbf{C}_{3v}	260
	5 The double group $\tilde{\mathbf{D}}_3$	261
	6 Some applications	262
	o bonne apprications	
16	SOLUTIONS TO PROBLEMS	266
Ref	erences	298
Ind	Index	