INHALTSVERZEICHNIS

§ 1.	Einl	eitung und Grundbegriffe	1
		Mengen	4
	1.2.	Abzählbare Mengen (Bemerkungen zum Auswahlaxiom und zur Kontinuumshypothese)	6
	1.3.	Geordnete Mengen; der Hausdorffsche Maximalitätssatz und der Wohlordnungssatz (Anwendungen, z.B. auf die Funktionalgleichung $f(x+y) = f(x)+f(y)$; Hamelbasis)	11
§ 2.	Topo:	logische Räume	18
		Umgebungen (Begriff des metrischen und topologischen Raumes; "klassische" Beispiele)	18
	2.2.	Offene Mengen (Teilräume; Sphären; Basen; endliche Produkte; Ordnungstopologie; Abzählbarkeitsaxiome)	21
	2.3.	Abgeschlossene Mengen (Abschlußoperator; Berührungspunkte; Häufungspunkte; isolierte Punkte)	25
	2.4.	Dichte Mengen (Separabilität)	27
	2.5	Vertiefende Beispiele topologischer Räume (endli- che Räume; ein abzählbarer Raum, der das erste Ab- zählbarkeitsaxiom nicht erfüllt; G ₅ -Punkte und G ₅ - Mengen; Sorgenfrey-Gerade und - Ebene; offen-abge- schlossene Mengen; nulldimensionale Räume; lexiko- graphische Ordnung)	29
	2.6.	Stetigkeit (Beispiele und verschiedene Zugänge sowie Charakterisierungen; Projektionsabbildung und endliche Produkte; schwache Topologien; die S¹als Quotientenraum; Quotientenabbildungen und -räume).	31
	2.7*.	Vertiefende Aufgaben (topologische Gruppen und Vektorräume)	37
	2.8.	Homöomorphismen (lokal-euklidische Räume; Tori; Beispiel und Bemerkungen zur Dimensions- und Gebietstreue im R ⁿ)	38
		Ordinal- und Kardinalzahlen (die Räume [0,0) und [0,0]: ein erster Ausblick auf die Notwendigkeit, das Konzept der metrischen Räume in einen allgemeineren Rahmen zu stellen ("Notwendigkeit" topologischer Räume); ein erster Ausblick auf Überdeckungseigenschaften und Metrisierbarkeit; die (allgemeine) Kontinuumshypothese; $ R , C(R) $; die Ordinalzahlen w_{μ} , die Kardinalzahlen x_{μ})	41

<u>§ 3.</u>	Metri	sche Räume	46
		Beispiele und einfache Eigenschaften (separable metrische Räume)	46
	3.2.	Konvergenz und Stetigkeit in metrischen Räumen (Hausdorff-Räume; normale Räume)	51
	3.3.	Vollständigkeit metrischer Räume (Topologie der gleichmäßigen Konvergenz); die Räume $C^*(X)$ und $C(X)$	53
	3.4.	Vertiefende Bemerkungen und Beispiele (u.a.: Ba- nachscher Fixpunktsatz und eine Anwendung auf Inte- gralgleichungen)	57
	3.5.	Der Satz von Baire (nirgendsdichte Mengen; magere Mengen; Mengen erster und zweiter Kategorie; der Satz von Baire für vollständig metrisierbare Räume)	59
	3.6.	Einige typische Anwendungsbeispiele aus der Topologie und der Reellen Analysis (Prinzip der gleichmäßigen Beschränktheit; eine stetige reelle Funktion, die nirgends differenzierbar ist)	63
	3.7.	Das Cantorsche Diskontinuum	66
		Kompaktheit (kompakte metrische Räume; einfachste Eigenschaften und Bedeutung kompakter Hausdorff-Räume; Lebesgue-Zahl; gleichmäßig stetige reelle Funktionen)	67
	3.9.	Die Topologie der punktweisen Konvergenz. (Unendliche Produkte; Bemerkungen zum Produktverhalten topologischer Eigenschaften; die Michael-Gerade; die Nicht-Metrisierbarkeit der Topologie der punktweisen Konvergenz auf RR)	74
§ 4.	Volla (Uni:	ständig reguläre Räume, Pseudometriken forme Räume, erster Teil)	82
		Systeme von Pseudometriken, uniforme Räume (Beispiele; Produkte metrischer Räume)	82
	4.2.	Netze (Moore-Smith Folgen); (Häufungspunkte; Grenz-werte; das Hausdorffsche Trennungsaxiom; Riemann-integrierbare Funktionen auf [a,b]; "es gibt keine Topologie der Konvergenz fast überall"; eine Bemerkung über "topologische Strukturen"; siehe auch Schlußbemerkung und § 8)	85
	4.3.	Universelle Netze (Existenz ultrafeiner Netze; Filter; Ultrafilter)	90
	•	Eine Anwendung aus der Non-standard Analysis (un- endlich kleine und unendlich große Zahlen; das Non-Standard Modell R*; Bemerkungen zum Infinitesi- malen-Kalkül)	93
	4.5.	Trennungseigenschaften (Begriffsbildungen und	95

	4.6.	Vollständig reguläre Räume: eine topologische Charakterisierung uniformer Räume (Z-Mengen, eine Charakterisierung der Stetigkeit mittels konver-	00
		genter Netze)	9 8
	4.7.	Das Lemma von Urysohn (eine Charakterisierung normaler Räume)	103
	4.8.	Fortsetzbarkeit stetiger Abbildungen, der Satz von Tietze-Urysohn (und ein Ausblick auf wichtige Anwendungen dieses Satzes)	105
5.	Kompa	akte Räume	108
	5.1.	Grundlegende Eigenschaften und der Satz von Tycho- noff. (Die Rolle des Auswahlaxioms; Der Satz von Dini)	108
	5.2.	Produkte I R _i und I[0,1] _i und deren Teilräume (Einbettungs- und Metrisierungssätze. Peano-Kurven)	114
	5.3.	einige Anwendungen in der Topologie und Analysis; Bemerkungen über verschiedene Zugänge und Konstruk- tionsmöglichkeiten; der kategorientheoretische	118
	5.4.	Lokalkompakte Räume (Die Ein-Punkt-Kompaktifizierung und Anwendungen in der Analysis; lokalkompakte Hausdorff-Räume sind Bairesche Räume)	
	5.5.	Mannigfaltigkeiten, Partition der Eins und para- kompakte Räume (Einbettung kompakter endlichdimen- sionaler Mannigfaltigkeiten in einen passenden Rn; parakompakte Räume – ein kurzer Ausblick auf die Me- trisierungstheorie; Dimension; topologische Sum- men)	
	5.6.	Version für kompakte Räume X und Anwendungen - z.B.	137
	5 .7*.	Der Satz von Stone-Weierstraß für nicht-kompakte Räume X; die kompakt-offene Topologie (verschiedene Verallgemeinerungsmöglichkeiten des Satzes von Stone-Weierstraß, Approximation stetiger Funktionen auf $[0,\infty)$; die Topologie der kompakten Konvergenz, die kompakt-offene Topologie und ihre Rolle für allgemeine Funktionenräume; Kelley-Räume)	141
	5.8 *.	Der Satz von Ascoli-Arzela (gleichgradige Stetig-keit; Kelley-Räume)	146
6.	Zusar	mmenhängende Räume	150
	6.1.	Zusammenhängende Räume, wegzusammenhängende Räume, unzusammenhängende Räume, (speziell für Teilmengen des R ⁿ und Anwendungen in der Analysis)	150

7.	Homot	opie und Fragen der Topologie des R ⁿ	155
			155
			15 8
	7.3.	Die Fundamentalgruppe der S ¹ (Hochheben von Wegen und Homotopien; Windungszahl; Begriff der Faserung; Dualität "Liften-Fortsetzen" stetiger Abbildungen)	162
	,	Vertiefende Bemerkungen (Abbildungsgrad für Funktionen f: $\mathbb{S}^1 \to \mathbb{S}^1$ und allgemeine Bemerkungen hiezu; Berechnung spezieller Fundamentalgruppen; ein Spezialfall des Satzes von Seifert-van Kampen; die $\mathbb{S}^n (n \geq 2)$ ist einfach zusammenhängend)	165
	7.5.	Der Brouwersche Fixpunktsatz im R ² und Plausibilitätsbetrachtungen für seine Gültigkeit im R ⁿ , Anwendungen	168
	7.6.	Homotopie und stetige Fortsetzung stetiger Funktionen, der Fundamentalsatz der Algebra (Aquivalente Formulierungen und Zugänge zum Brouwerschen Fixpunktsatz; antipodentreue Abbildungen; der Satz von Borsuk-Ulam; die Nicht-Homöomorphie von R^m und R^n für n $\!$	170
	7.7	Überlagerungen (Weitere Beispiele von Fundamental- gruppen; die projektive Ebene; Begriff der Faserung; Begriff des universellen Überlagerungsraumes)	173
	7.8 *.	Höhere Homotopiegruppen (Verschiedene Zugänge; das topologische Exponentialgesetz)	185
§ 8*	. Uni	forme Raume (2. Teil)	192
	8,1.	Verschiedene Zugänge zur Theorie der uniformen Räume, Pseudometriken, Weil-Strukturen (Entourages), uniforme Überdeckungen; Metrisierbarkeit uniformer Räume; gleichmäßig stetige Abbildungen	
	8.2.	Die Topologie uniformer Räume Uniforme Struktur kompakter Räume; uniforme Struk- tur parakompakter Räume; uniforme Strukturen topo- logischer Gruppen; uniforme Struktur der wichtig- sten Funktionenräume	202
	8.3.	Produkte und Teilräume uniformer Räume Produktuniformität und Produkttopologie; Einbettung uniformer Räume in Produkte metrischer Räume	208
	8.4.	Vollständige uniforme Räume Cauchy-Netze; Vollständigkeit; Produkte und Teil- räume vollständiger Räume; Vervollständigung uni- former Räume; Bemerkungen über den kategorienthe- oretischen Hintergrund; präkompakte (totalbeschränk- te) uniforme Räume; Kompaktifizierungen, die Stone- Cech-Kompaktifizierung ßX als Vervollständigung der von C*(X) auf X induzierten uniformen Struktur; reellkompakte Räume	

Cauchy-Filzwischen F: F-Filter; Kompaktifi: Menge alle:	kung über Filter und Netze ter; Bemerkungen über die Äquivalenz iltern und Netzen; Vorteile der Filter; z-Filter; Konstruktion der Stone-Čech- zierung \$X als geeignet toplogisierte r z-Ultrafilter auf X; eine Bemerkung an-Kompaktifizierungen	220
Schlußbemerkung		224
Anhang		228
Literaturverzeichnis	•••••	230
Register		236