CONTENTS

	List of Symbols	ix
	Preface	xi
1	Introduction	1
1.1	Real Analysis	3
1.2	Computable Analysis	3
2	Programs and Programmable Functions	6
2.1	Refinement of the Concept of Algorithm	6
2.2	Programs	7
2.3	Programmable Functions	9
2.4	Recursion with Programmable Functions	13
2.5	Minimalization with Programmable Functions	16
2.6	Programmable Functions by Enumeration of Cases	17
3	The Computable Number Field	20
3.1	Computable Processes	20
3.2	Computable Numbers	21
3.3	Rational Operations with Computable Numbers	22
3.4	Inequalities and Absolute Values	25
4	A Universal Program and Introduction to	
	Effective Methods	28
4.1	A Universal Program	28
4.2	Effective Methods	32
5	Functions and Sequences	34
5.1	Functions $f(x)$ of a Computable Number Variable x	34
5.2	Extensions of the Definition of Function	37
5.3	Sequences	38
5.5	Sequences	

¥

vi CONTENTS

5.4 5.5	Monotone Sequences Sequences of Functions	4
5.5	•	4
6	Effective Methods	4
6.1	Statements Concerning Numbers, Sequences, Functions	4
6.2	A General Principle	48
6.3	Extensions of the Concept of Effective Method	50
6.4	Problems for Which There Are Effective Methods of Solution	53
7	Continuous Functions	57
7.1	Definitions and Basic Results	57
7.2	Pointwise Continuity and Uniform Continuity on a Closed Interval	59
7.3	Limits of Functions	61
7.4	Finding an Argument x Where a Function $f(x)$ Equals a Given Value	63
7.5 7.6	Bounds, Suprema, Infima for a Function $f(x)$	68
7.0	Uniformly Continuous Functions	71
8	The Derivative of a Function	76
8.1	Definition of the Derivative	76
8.2	A Mean Value Theorem	79
9	Functions of Bounded and Limit Variation	84
9.1	Definitions	84
9.2	Functions of Bounded Variation	86
9.3	Functions of Limit Variation	88
9.4	Various Examples	91
10	The Riemann Integral of a Function	94
10.1	Riemann Sums and a Riemann Integral	94
10.2	A Useful Criterion for $f(x)$ To Be Integrable	96
10.3	Properties of Integrable Functions	101
10.4	The Definition of a Function by an Integral	104
10.5	Three Examples	106
11	Functions of Two Variables	112
11.1	Introduction	112
11.2	Domains and Limits	112
11.3	Partial Derivatives	114
11.4	The Chain Rule	116
11.5	Equality of Cross Derivatives	119
12	The Differential Equation $y' = f(x, y)$	121
12.1	Introduction	121
12.2	Conditions on $f(x, y)$ for a Solution	122
12.3	The Possibility of No Solution	125

13	Miscellaneous Topics of Computable Analysis	130
13.1	A Chain of Inclusion Relations	130
13.2	No Heine-Borel Analog in Computable Analysis	131
13.3	Cantor Counting Theory in Computable Analysis	132
13.4	Effective Methods and Well-Posed Problems	133
13.5	Convergence of a Sequence of Functions at a Point	134
13.6	Fourier Series	136
14	Complex Computable Analysis	137
14.1	The Field of Complex Computable Numbers	137
14.2	Sequences of Complex Numbers	138
14.3	Complex-Valued Functions	139
14.4	The Derivative of a Function $f(z)$	141
14.5	Integration in the Complex Plane	144
14.6	Zeros of Polynomials	149
	Appendixes	154
1	The Relationship Between Programmable Functions and	
	Recursive Functions	154
2	The Universal Program U and the Related Program \hat{U}	161
3	Proof of Ceitin's Theorem	173
	Notes on the References	178
	References	180
	Index	185
	THUCA	10.