Contents

	Preface	хi
	CHAPTER 1: SET THEORY	
1.1	Introduction	1
1.2	Operations on Sets	5
1.3	Functions	7
1.4	Relations	13
1.5	Partial Ordering	17
1.6	Countable Sets	18
1.7	Cardinal Numbers	22
1.8	Operations on Cardinal Numbers	26
1.9	Algebra of Sets	30
1.10	The Axiom of Choice and Some of Its	
	Equivalent Formulations	33
1.11	Ordinal Numbers	36
	Problems	45
	CHAPTER 2: THE REAL NUMBERS	
2.1	Fundamental Structures in Mathematics	53
2.2	GroupsRingsFields	54
2.3	Isomorphism of Mathematical Systems	57
2.4	The Extended Real Number System	63

CONTENTS		viii	
2.5	Topology of the Real Line	65	
2.6	Continuous Functions	80	
2.7	Semicontinuous Functions	87	
2.8	The Cantor Ternary Set	89	
2.9	Borel Sets	91	
	Problems	93	
	CHAPTER 3: LEBESGUE INTEGRAL		
3.1	Introduction	104	
3.2	Lebesgue Measure	107	
3.3	Existence of a Nonmeasurable Set	119	
3.4	Measurable Functions	121	
3.5	Approximation Theorems	127	
3.6	The Lebesgue Integral of a Bounded		
	Function Over a Set of Finite Measure	139	
3.7	The Lebesgue Integral of a Nonnegative		
	Function	148	
3.8	The General Lebesgue Integral	158	
3.9	Further Comparison Between Riemann		
	and Lebesgue Integrals	167	
	Problems	169	
	CHAPTER 4: RELATION BETWEEN DIFFERENTIATION		
AND	INTEGRATION		
4.1	Introduction	181	
4.2	Functions of Bounded Variation	182	
4.3	Differentiation of Monotone Functions	187	
4.4	The Derivative of an Indefinite Integral	198	
4.5	Absolutely Continuous Functions	205	
	Problems	211	
	CHAPTER 5: METRIC SPACES		
5.1	Introduction	217	

CONTENTS	ix

5.2	Isometries	220
5.3	Open and Closed Sets	222
5.4	Continuous MappingsHomeomorphisms	229
5.5	Equivalent Metrics	233
5.6	LimitsConvergenceCompleteness	233
5.7	Uniformly Continuous Mappings	247
5.8	Extension of Mappings	250
5.9	The Method of Successive Approximations	252
5.10	Compact Metric Spaces and the Bolzano-	
	Weierstrass Theorem	257
5.11	Equicontinuous Spaces of Functions	264
5.12	Category	271
	Problems	276
	_	
	CHAPTER 6: L ^P SPACES	
6.1		293
	The Hölder and Minkowski Inequalities	294
6.3	Convergence in the Mean of Order	
	$p (1 \le p < +\infty)$	300
6.4	Bounded Linear Functionals on L ^p	304
	Problems	310
	CHAPTER 7: TOPOLOGICAL SPACES	
7.1	Introduction	315
7.2	Open Sets and Closed Sets	317
	ClosureInteriorBoundary	322
7.4	Continuous Functions	326
7.5	Bases	329
	Weak Topologies	333
7.7	_	340
7.8	Compactness	344
7.9	Locally Compact Topological Spaces	
	Compactification	358
7.10	The Stone-Weierstrass Theorem	362

CONTENTS x

7.11	Connectivity	369
	Problems	374
	CHAPTER 8: BANACH SPACES	
Ω 1	Vector Spaces	386
	Linear Transformations	
	Linear FunctionalsThe Hahn-Banach	395
0.5	Theorem	400
8.4		400
8.5		409
0.5	mation	477
8.6		411
0.0	The Closed Graph TheoremThe Uniform	43.5
0 7	Boundedness Principle	415
8.7	· • · · · · · · · · · · · · · · · · · ·	419
	Problems	427
	CHAPTER 9: HILBERT SPACE	
0 1	Introduction	405
		437
9.2	110po1020	437
9.3	or chonormar by b comb	454
9.4	The Dual Space of a Hilbert Space	468
	Problems	472
	CHAPTER 10: MEASURE AND INTEGRATION	
10 1	Introduction	470
		478
	Measurable Functions and Measure	479
	Integration	486
	Signed Measures	500
	Absolute Continuity	513
	The L ^p Spaces	528
10.7	Product Measures and Fubini's Theorem	538
	Problems Bibliography	556 567
	Index of Symbols	571
	Index	573