CONTENTS

CHAPTER	1. Basic theory	1
	1. Introduction	1
	2. Basic concepts of abstract graphs	3
	2.1. General definitions	3
	2.2. Isomorphism	6
	2.3. Connectedness	8
	2.4. Rank and nullity	11
	2.5. Degrees	12
	3. Operations on graphs	13
	4. Some important classes of graphs	17
	4.1. Planar graphs	17
	4.2. Separable and nonseparable graphs	19
	4.3. Bipartite graphs	22
	5. Directed graphs	23
	5.1. Basic concepts	24
	5.2. Directed-edge sequence	27
	5.3. Outgoing and incoming degrees	29
	5.4. Strongly-connected directed graphs	30
	5.5. Some important classes of directed graphs	31
	6. Mixed graphs	32
	7. Conclusions	32
	Problems	33
CHAPTER	2. Foundations of electrical network theory	36
	1. Matrices and directed graphs	37
	1.1. The node-edge incidence matrix	37
	1.2. The circuit-edge incidence matrix	41
	1.3. The cut-edge incidence matrix	46
	1.4. Interrelationships among the matrices A , B_f , and Q_f	53
	1.5. Vector spaces associated with the matrices B_a and Q_a	57
	2. The electrical network problem	58
	3. Solutions of the electrical network problem	62
	3.1. Branch-current and branch-voltage systems of equations	63
	3.2. Loop system of equations	63
	3.3. Cut system of equations	70
	3.4. Additional considerations	76
	4. Invariance and mutual relations of network determinants and the generalized	
	cofactors	77

XIV Contents

4.1. A brief history	77
4.2. Preliminary considerations	78
4.3. The loop and cut transformations	83
4.4. Network matrices	85
4.5. Generalized cofactors of the elements of the network matrix	95
5. Invariance and the incidence functions	107
6. Topological formulas for <i>RLC</i> networks	111
6.1. Network determinants and trees and cotrees	111
6.2. Generalized cofactors and 2-trees and 2-cotrees	114
6.3. Topological formulas for RLC two-port networks	122
7. The existence and uniqueness of the network solutions	125
8. Conclusions	132
Problems	133
CHAPTER 3. Directed-graph solutions of linear algebraic equations	140
1. The associated Coates graph	141
1.1. Topological evaluation of determinants	142
1.2. Topological evaluation of cofactors	146
1.3. Topological solutions of linear algebraic equations	149
1.4. Equivalence and transformations	155
2. The associated Mason graph	167
2.1. Topological evaluation of determinants	169
2.2. Topological evaluation of cofactors	172
2.3. Topological solutions of linear algebraic equations	174
2.4. Equivalence and transformations	177
3. The modifications of Coates and Mason graphs	189
3.1. Modifications of Coates graphs	189
3.2. Modifications of Mason graphs	197
4. The generation of subgraphs of a directed graph	199
4.1. The generation of 1-factors and 1-factorial connections	201
4.2. The generation of semifactors and k -semifactors	203
5. The eigenvalue problem	206
6. The matrix inversion	210
7. Conclusions	216
Problems	216
CHAPTER 4. Topological analysis of linear systems	224
1. The equicofactor matrix	225
2. The associated directed graph	230
2.1. Directed-trees and first-order cofactors	231
2.2. Directed 2-trees and second-order cofactors	244
3. Equivalence and transformations	251
4. The associated directed graph and the Coates graph	262
4.1. Directed trees, 1-factors, and semifactors	262
4.2. Directed 2-trees, 1-factorial connections, and 1-semifactors	266
5. Generation of directed trees and directed 2-trees	269

C	Contents	XV

	5.1. Algebraic formulation	209
	5.2. Iterative procedure	272
	5.3. Partial factoring	279
	6. Direct analysis of electrical networks	281
	6.1. Open-circuit transfer-impedance and voltage-gain functions	281
	6.2. Short-circuit transfer-admittance and current-gain functions	289
	6.3. Open-circuit impedance and short-circuit admittance matrices	294
	6.4. The physical significance of the associated directed graph	297
	6.5. Direct analysis of the associated directed graph	302
	7. Conclusions	311
	Problems	312
CHAPTER	5. Trees and their generation	320
	1. The characterizations of a tree	320
	2. The codifying of a tree-structure	325
	2.1. Codification by paths	326
	2.2. Codification by terminal edges	328
	3. Decomposition into paths	330
	4. The Wang-algebra formulation	332
	4.1. The Wang algebra	333
	4.2. Linear dependence	334
	4.3. Trees and cotrees	338
	4.4. Multi-trees and multi-cotrees	340
	4.5. Decomposition	345
	5. Generation of trees by decomposition without duplications	353
	5.1. Essential complementary partitions of a set	353
	5.2. Algorithm	356
	5.3. Decomposition without duplications	359
	6. The matrix formulation	365
	6.1. The enumeration of major submatrices of an arbitrary matrix	365
	6.2. Trees and cotrees	368
	6.3. Directed trees and directed 2-trees	370
	7. Elementary transformations	373
	8. Hamilton circuits in directed-tree graphs	379
	9. Directed trees and directed Euler lines	384
1	10. Conclusions	389
]	Problems	390
CHAPTER	6. The realizability of directed graphs with prescribed degrees	398
	1. Existence and realization as a (p, s)-digraph	398
	1.1. Directed graphs and directed bipartite graphs	400
	1.2. Existence	40
	1.3. A simple algorithm for the realization	41:
	1.4. Degree invariant transformations	419
	1.5. Realizability as a connected (p, s)-digraph	42
	2. Realizability as a symmetric (p, s)-digraph	42

XVI Contents

2.1. Existence	428	
2.2. Realization	433	
2.3. Realizability as connected, separable and nonseparable graphs	436	
3. Unique realizability of graphs without self-loops	440	
3.1. Preliminary considerations	441	
3.2. Unique realizability as a connected graph	443	
3.3. Unique realizability as a graph	446	
4. Existence and realization of a (p, s) -matrix	448	
5. Realizability as a weighted directed graph	452	
6. Conclusions	454	
Problems	455	
Chapter 7. State equations of networks	464	
1. State equations in normal form	464	
2. Procedures for writing the state equations	472	
3. The explicit form of the state equation	479	
4. An alternative representation of the state equation	490	
5. Physical interpretations of the parameter matrices	491	
6. Order of complexity	499	
6.1 Relations between det $H(s)$ and network determinant	504	
6.2 <i>RLC</i> networks	508	
6.3 Active networks	511	
7. Conclusions	514	
Problems	515	
Bibliography	£10	
	518 529	
Symbol index		
Subject index		