Contents

Chapter 1 The Number System	3 6 9
4.4 (77) 75 4 1	9
1.1 The Peano Axioms	
1.2 Rational Numbers and Arithmetic	
1.3 The Real Numbers: Completeness	12
1.4 Geometry and the Number System	13
1.5 Bounded Sets	15
1.6 Some Points of Logic	18
1.7 Absolute Value	19
Chapter 2 Functions, Sequences, and Limits	25
2.1 Mappings, Functions, and Sequences	25
2.2 Limits	30
2.3 Operations with Limits (Sequences)	37
2.4 Limits of Functions	44
2.5 Operations with Limits (Functions)	49
2.6 Monotone Sequences	53
2.7 Monotone Functions	56

x Contents

~-	. A C. of the IMage Timber	<i>c</i> 1		
Chapt	ter 3 Continuity and More Limits	61		
3.1	Continuity. Uniform Continuity	61		
3.2		65		
3.3	The Intermediate-Value Property	67		
3.4		68		
3.5		74 70		
3.6		79 84		
	3.7 Limit Superior and Limit Inferior			
3.8	Deeper Properties of Continuous Functions	89		
Chap	ter 4 Differentiation	95		
4.1	The Derivative, Chain Rule	95		
4.2	The Mean-Value Theorem	101		
4.3	,, <u> </u>			
	4.4 L'Hospital's Rule			
	Taylor's Formula with Remainder	120		
4.6	Extreme Values	126		
Chap	ter 5 Integration	131		
5.1	Introduction	131		
	Preliminary Lemmas	133		
5.3	<u> </u>	140		
	Properties of the Definite Integral	151		
5.5	The Fundamental Theorem of Calculus	156		
5.6		160		
5.7	Integrals of Discontinuous Functions	166		
Chai	oter 6 The Elementary Transcendental			
- mag	Functions	175		
6.1	The Logarithm	175		
6.2	The Exponential Function	179		
6.3	The Circular Functions	183		

Contents xi

PAR'	T II VECTOR CALCULUS	197			
Chap	ter 7 Vectors and Curves	199			
7.1	Introduction and Definitions	199			
7.2	Vector Multiplications	206			
7.3	The Triple Products	214			
7.4	Linear Independence. Bases. Orientation	219			
7.5	Vector Analytic Geometry	223			
7.6	Vector Spaces of Other Dimensions: E_n	225 230			
	7.7 Vector Functions. Curves				
7.8	Rectifiable Curves and Arc Length	233			
7.9	Differentiable Curves	237			
Chap	ter 8 Functions of Several Variables.				
-	Limits and Continuity	249			
8.1	A Little Topology: Open and Closed Sets	249			
8.2	A Little More Topology: Sequences, Cluster Values,	054			
0.0	Accumulation Points, Cauchy Criterion	254			
8.3	Limits	260			
8.4	Vector Functions of a Vector	264			
	Operations with Limits	268			
	Continuity Constitute Picture of a Franction	269			
8.7		274 277			
8.8	Matrices and Linear Transformation				
Chap	ter 9 Differentiable Functions	289			
9.1		289			
	Differentiability. Total Differentials	299			
9.3	The Derivative	307			
9.4	The Gradient. The Del Operator. Directional				
	Derivatives	315			
	The Chain Rule	321			
9.6					
	Several Variables	330			
9.7	The Divergence and Curl of a Vector Field	333			

xii Contents

Chap	ter 10 The Inversion Theorem	339		
10.1	Transformations. Inverse Transformations	339		
10.2	2 The Inversion Theorem			
10.3				
10.4	4 Global Inverses			
10.5	Curvilinear Coordinates			
10.6	5 Extreme Values			
10.7	Extreme Values Under Constraints	372		
Chap	ter 11 Multiple Integrals	379		
11.1	Integrals Over Rectangles	379		
	Properties of the Integral. Classes of Integrable			
	Functions	387		
11.3	Iterated Integrals	389		
	Integration Over Regions. Area and Volume	394		
Chap	ter 12 Line and Surface Integrals	405		
12.1	Line Integrals. Potentials	405		
12.2	Green's Theorem	417 429		
12.3				
12.4				
12.5	Stokes' Theorem. Orientable Surfaces	442		
12.6	Some Physical Heuristics	449		
12.7	Change of Variables in Multiple Integrals	451		
PAR	T III THEORY OF CONVERGENCE	461		
Chap	ter 13 Infinite Series	463		
13.1	8,	463		
13.2	Series with Nonnegative Terms: Comparison Tests	468		
13.3	Series with Nonnegative Terms: Ratio and Root Tests.			
	Remainders	475		
13.4	Series with Variable Signs	480		

Contents	xiii

13.5	More Delicate Tests	483		
13.6				
13.7	Improvement of Convergence			
Chap	ter 14 Sequence and Series of Functions. Uniform Convergence	50 3		
14.1	Introduction	503		
14.2				
14.3	8			
14.4	1			
14.5		521 525		
Chap	ter 15 The Taylor Series	529		
15.1	Power Series. Interval of Convergence	529		
15.2		536		
15.3	The Taylor and Maclaurin Series	543		
15.4	The Arithmetic of Power Series	549		
15.5	Substitution and Inversion	558		
15.6	Complex Series	560		
15.7	Real Analytic Functions	564		
Chap	ter 16 Improper Integrals	567		
16.1	Improper Integrals. Conditional and Absolute			
	Convergence	567		
16.2	Improper Integrals with Nonnegative Integrands	576		
16.3	The Cauchy Principal Value	579		
16.4	An Alternation Test	581		
16.5	Improper Multiple Integrals	584		
Chap	ter 17 Integral Representations of Functions	591		
17.1	Introduction. Proper Integrals	591		
17.2	Uniform Convergence	595		
17.3	Consequences of Uniform Convergence	601		

xiv Contents

Chap	ter 18	Gamma and Beta Functions. Laplace's Method and Stirling's Formula	621	
18.1	The Ga	amma Function	621	
18.2	2 The Beta Function			
18.3	Laplac	e's Method	629	
18.4	Stirling	's Formula	635	
Chap	ter 19	Fourier Series	639	
19.1	Introd	uction	639	
19.2	The Cl	ass \mathfrak{R}_2 . Approximation in the Mean. Bessel's		
	Inequa	lity	646 650	
19.3	3 Some Useful Lemmas			
19.4	Conve	gence Theorems	654	
19.5	Differe	ntiation and Integration. Uniform Convergence	664	
19.6	Sine ar	d Cosine Series. Change of Scale	669	
19.7	Improv	rement of Convergence	673	
19.8		ourier Integral	676	
19.9	Functi	on Spaces. Complete Orthonormal Sets	683	
Elem Forn		Differentiation and Integration	691	
Ansv	vers, H	ints, and Solutions	693	
Inde	Y		727	