CONTENTS

Preface	5
Notation and Abbreviations	10
Chapter 1	
PERSPECTIVE DRAWING, STRUCTURAL	
STATICS AND AESTHETICS	
1.1 Structure, Form and Spatial Image	
1.1.1 In nature and in science	13
1.1.2 Geometry, statics and spatial image	14
1.2 The Development of an Evocative and	
Exact Planar Representation of Space	
1.2.1 Image, projection and drawing	16
1.2.2 General geometric methods of	
drawing	17
1.2.3 Cylindrical projection. Affinity	19
1.2.4 Solution of plane metric problems	
by means of affinity	21
1.2.5 The parallel perspective diagram	
of space referred to one, two and	
three reference planes	24
1.2.6 Oblique axonometry and the des-	
criptive geometry representation .	28
1.2.7 Conversion of an oblique axono-	
metry into a D.G. representation .	31
1.2.8 Determination of unit image along	
any direction	33
1.2.9 Other oblique axonometries	34
1.2.10 General theorem of oblique axo-	
nometry	35
1.2.11 Orthogonal axonometry	37
1.2.12 Transformation of the D.G. re-	
presentation into an orthogonal	
axonometric projection	38

1.3 Descriptive Geometry Representation versus Axonometry	
1.3.1 D.G. representation and parallel perspective picture. Reducing the labour in graphic construction	40
1.3.2 Relative benefits and potentialities of oblique and orthogonal axonometry	41
Chapter 2	
FROM GEOMETRIC SURFACES	
TO THIN CURVED SHELLS	
A. GENERAL TECHNICAL, ECONOMIC, AESTHETIC AND GEOMETRIC CONSIDERATIONS	
2.1 Case History	
2.1.1 Solid vaults and stone stereotomy.	45
2.1.2 Thin shells. Modern technical, economic and aesthetic considerations.	48
2.2 General Geometric Specifications and Properties of Surfaces	
2.2.1 Geometric specification of surfaces.	51
2.2.2 Analytical specification of surfaces.	53
2.2.3 Differential specification of surfaces.	55
2.3 Geometric and Statical Classification of Roofing Surfaces	
2.3.1 Supporting and self-supporting capacity; suspension	60
2.3.2 Geometric and static criteria of surface classification	61

B.	SURFACES WITH TOTAL CURVATURE IDENTICALLY ZERO	
	2.3.3 General	62
2.4	The Cylinder	
	2.4.1 Cylinder of revolution	62
	2.4.2 Parabolic cylinder	65
	2.4.3 Sine cylinder	65
2.5	5 The Cone	
	2.5.1 Cone of revolution	65
	2.5.2 Other conical surfaces	67
2.6	Penetrations of Cylindrical and Conic Surfaces	
	2.6.1 Cylindrical intersection	68
	3 (3 D) 1	70
	2.6.2 Dual-tangency vaults 2.6.3 The Moldavian Vault	73
2.7	Other Developable Surfaces	
	2.7.1 Developable helicoid	75
	2.7.2 Möbius ring	75
C.	SURFACES WITH CONSTANT TOTAL CURVATURE	
	2.7.3 General	75
2.8	The Sphere	
	2.8.1 The sphere in orthogonal projection .	78
	2.8.2 The sphere in oblique projection .	81
	2.8.3 Spherical domes	82
D.	SURFACES WITH NEGATIVE TOTAL CURVATURE	
	2.8.4 General	88
2.9	Ruled Surfaces (General)	
	2.9.1 General ruled surfaces (denoted by	
	Rs)	88
	and one straight line as directrices	
	(cylindroid)	92
	2.9.3 The ruled surface having as direc-	
	trices a curve and two straight lines	0.1
	(conoid)	93

2.9.4 Ruled surface with three directrices (quadric)	95
2.10 Ruled Hyperboloid	
2.10.1 General ruled hyperboloid (denoted by RH)	96
2.10.2 Closure problems on a RH	99
2.10.3 Ruled hyperboloid of revolution.	101
2.10.4 Ruled hyperboloid of revolution	
with facets	103
2.10.5 Intersection of two ruled hyper-	
boloids having a reference plane.	106
2.11 Hyperbolic Paraboloid	
2.11.1 The hyperbolic paraboloid as a	
ruled surface	108
2.11.2 Apparent, true and projected	
contours of a hyperbolic para-	
boloid	116
2.11.3 The hyperbolic paraboloid as a	
surface of translation	117
2.11.4 The relationship between the defi-	
nition and construction of a hyper-	
bolic paraboloid as a ruled surface	
and as a surface of translation.	119
2.11.5 Plane sections through a hyper-	
bolic paraboloid	125
2.11.6 Intersection of two hyperbolic	130
paraboloids	130
2.11.7 Roofing surfaces built up from hyperbolic paraboloids	144
	• • •
2.12 Other Particular Ruled Surfaces	
2.12.1. The ordinderid	164
2.12.1 The cylindroid	166
2.12.2 The conoid	100
E. SURFACES WITH POSITIVE TOTAL CURVATURE	
2.12.3 General	172
2.13 Quadrics	
2.13.1 The ellipsoid	172
2.13.2 The two-sheet hyperboloid	174
2.13.3 The elliptic paraboloid	176
2.14 Surfaces of Translation	
2.14.1 Surfaces having second-degree curves as directrix-generatrices.	177

2.14.2 Compound surfaces of translation. The Gothic 'vault'	179
2.15 Surfaces of Revolution	
2.15.1 General	179
F. SURFACES WITH POSITIVE AND NEGATIVE TOTAL CURVATURE	
2.15.2 General	180
2.16 Surfaces of Translation	
2.16.1 Considerations relating to diffe-	
rential analysis	180
curves as generatrices-directrices.	182
2.17 Surfaces of Revolution	
2.17.1 Considerations relating to diffe-	
rential analysis	182
2.17.2 The torus. The bitangential torus-	
conoid penetration	184
G. SURFACES OF ZERO AVERAGE CURVATURE (MINIMAL SURFACES)	
2.17.3 General	187
2.17.4 The right helix with a directing	
plane	189
2.17.5 Catenoid	191
H. OTHER SURFACES	
2.17.6 Titeica's surfaces	193
Chapter 3 FROM POLYHEDRA TO SPACE FRAMES	
A. GENERAL TECHNICAL, ECONOMIC, AESTHETIC AND GEOMETRIC CONSIDE- RATIONS	
3.1 Historical Summary	
3.1.1 Natural and man-made framed	
structures	197
3.1.2 Present-day economic, technical and	
aesthetic status of space-frame struc- tures	200
4	200
3.2 Definitions and Geometric Properties of Polyhedra	
3.2.1 General. Euler's formula	201
3.2.2 The five regular (Platonic) polyhedra	202

3.2.3 The 13 semi-regular (Archimedean)			
polyhedra	207		
3.2.4 Reciprocal of semi-regular poly-			
hedra	220		
3.2.5 Plane and space equipartition. Two-	225		
dimensional equipartition in space.	227		
B. FRAMED STRUCTURES			
3.3 Planar Framed Structures			
3.3.1 General structural considerations .	233		
3.3.2 Lattice (truss) grids	234		
3.3.3 Planar three-dimensional grids	235		
3.4 Space-Frame Structures			
3.4.1 General structural considerations. Approximation of surfaces using			
polyhedra	24 7		
3.4.2 Spherical polyhedral surfaces. Geo-			
desic domes	250		
3.4.3 Icosahedral grids	260		
3.4.4 Dodecahedral grids	266		
3.4.5 A III grids	275		
3.4.6 A V grids	278		
3.4.7 A XIII grids	281		
3.4.8 A comparison of spherical triangulated grids	205		
lated grids	285 289		
C. FOLDED AND FACETED SURFACES	207		
3.4.10 General geometric and structural			
considerations	292		
3.5 Folded and Folded-Facet Surfaces			
3.5.1 On developable surfaces	294		
3.5.2 On non-developable surfaces of re-			
volution	300		
3.5.3 On non-developable ruled surfaces			
(cylindroids, conoids, RH and HP).	303		
3.6 Faceted Surfaces			
3.6.1 Faceted surface geometry	305		
3.6.2 On translational surfaces	306		
3.6.3 On ruled surfaces	307		
Chapter 4			
CONCLUSIONS AND PROSPECTS 315			
BIBLIOGRAPHY	317		