CONTENTS

NOTE	Notations		
Cha	pter 1. Introductory Metric Topology and Euclidean n-Space	1	
1.1.	The Spaces \mathcal{V}^n and \mathcal{E}^n	1	
1.2.	Local Metric Concepts	7	
1.3.	Basic Categories and Relations of Metric Sets; Relative		
	Topology	13	
1.4.	Boundedness, Connectedness, Compactness	20	
1.5.	Continuous Mappings of Metric Sets	30	
1.6.	Connectedness in \mathscr{E}^1	40	
1.7.	Compactness in \mathscr{E}^n	44	
1.8.	Basic Distance Variations, Foot in a Set, Diameter,		
	Nearness of Sets	51	
Chaj	oter 2. The Structure of Euclidean n-Space	60	
2.1.	Linear and Planar Concepts in \mathscr{E}^n	60	
2.2.	Angles and the Euclidean Inner Product	64	
2.3.	A Review of Some Basic Linear Algebra	68	
2.4.		80	
2.5.	Linear and Affine Functions and Invariants	88	
2.6.	Hyperplanes, Half-Spaces, Convexity	92	
Cha	pter 3. Dimension and Basic Structure of Convex Bodies and	106	
	Surfaces	100	
3.1.		107	
3.2.	Surface Connectivity, Foot Projections	117	
		vii	

viii	CONTENTS

Chaj	eter 4. The General Geometry of Convex Bodies	124
4.1.	Simplices; Barycentric Coordinates	124
4.2.	Tangent and Supporting Hyperplanes of a Convex Surface;	
	Regular Points, Corner Points; Hyperplane Separation of Sets	137
4.3.	Widths of a Set, Support and Width Functions, Convex Hulls	147
4.4	Convex Cones; Support and Normal Cones	162
Chap	ter 5. Convex Spans and Independence, Related Classical Theorems	1 <i>7</i> 7
5.1.	The Radon Theorem and Some Helly Theorems	177
5.2.	Dilatations, Centers, and Centralness	186
5.3.	Extreme Points, Convex Hulls, the Theorem of	
	Caratheodory	196
Chap	ter 6. Linear Combinations of Sets and the Hausdorff Metric	216
6.1.	Linear Combinations of Sets	216
6.2.	Some Separation Properties	227
6.3.	Hausdorff Distance, Blaschke Selection Theorem	231
6.4.	Applications of the Hausdorff Metric and the Blaschke	
	Selection Theorem	242

Index

259