CONTENTS #### **FOREWORD** vii #### LIST OF PLATES AND PATTERNS xiii #### I. INTRODUCTION 1 goals \bullet etymology of "fractal" \bullet J. Perrin on irregularity and fragmentation in Nature \bullet from Perrin through Wiener \bullet the fractal palace: museum and toolshed \bullet multiple facets of dimension; definition of fractals \bullet spatial homogeneity and self similarity \bullet limitations of topology in the study of form \bullet physical dimension \bullet many different dimensions implicit in a ball of thread \bullet of notions that are new, but \bullet this Essay mixes styles: is semipopular and scholarly \bullet the role of graphics \bullet points of logistics #### II. HOW LONG IS THE COAST OF BRITAIN? 27 multiplicity of alternative methods of measurement \bullet arbitrariness of the results of measurement \bullet Richardson's empirical data \bullet fractal dimension \bullet Hausdorff fractal dimension \bullet a curve's fractal dimension may be > 1; fractal curves \bullet intuitive notions of self similarity and cascade \bullet a rough model of a coastline: the triadic Koch curve \bullet the similarity dimension D; for the triadic Koch curve $D = \log 4/\log 3 = 1.2618$ \bullet intuitive meaning of fractal dimension without passage to the limit \bullet generalized Koch curves and avoidance of double points \bullet the contribution of offshore islands to the dimension \bullet the Korčak law \bullet fractal dimension as a measure of fragmentation \bullet dependence of measure on radius when D is a fraction \bullet the length-area relationship \bullet application \bullet generalization to space \bullet how winding is the Missouri River? data \bullet theory: the shores of a river network as a Peano curve \bullet how wide is the Missouri River? \bullet fractal curves with D=2 \bullet vascular geometry #### III. USES OF NONCONSTRAINED CHANCE 81 random coastlines \bullet empty invocation of chance versus actual description \bullet nonconstrained versus self constrained chance \bullet search for the right amount of irregularity \bullet Brownian motion \bullet the expectation $\langle X \rangle \bullet$ Brownian function and trail \bullet statistical self similarity; for Brownian trails, D=2 \bullet dependence of mass on radius \bullet Brownian functions and zerosets \bullet the fractal dimension of linear sections \bullet Brownian motion is not a suitable model of a coastline \bullet a Brownian function model of a river's course \bullet a tentative conclusion about nonconstrained chance \bullet pseudo randomness and primary chances #### IV. FRACTAL EVENTS AND NOISES 95 description of a category of data-transmission lines \bullet intermissions \bullet a rough model of error bursts: the Cantor set \bullet dimensions between 0 and 1 \bullet average numbers of errors in the Cantorian model \bullet conditionally stationary error patterns \bullet clustering \bullet number of errors in the randomized model \bullet sets on the line obtained by random cutouts \bullet random "street" and disc cutouts #### V. FRACTAL CLUSTERS OF STELLAR MATTER 109 is there an upper limit to the self similar zone? \bullet what is the global density of matter? \bullet summary of this chapter \bullet the Fournier universe \bullet distribution of mass: fractal homogeneity \bullet generalized Fournier universes \bullet the Charlier universe \bullet the Olbers paradox \bullet Fournier's reasons for expecting D=1 \bullet Hoyle curdling; the Jeans criterion also yields D=1 \bullet asides on thermodynamics and relativity theory \bullet the cosmographic principle \bullet the conditional cosmographic principle \bullet the additional assumption of positive overall density \bullet the classical case \bullet the nonclassical case \bullet Rayleigh flight stopovers \bullet the dimension D=2 \bullet a generalized density and expansion of the universe \bullet stopovers of a Cauchy flight and the dimension D=1 \bullet stopovers of a Lévy flight; noninteger dimensions < 2 \bullet conclusion \bullet aside on Lévy stability \bullet comparison with fractal errors \bullet can a fractal universe be obtained by agglutination? ### VI. TURBULENCE, INTERMITTENCY AND CURDLING 145 analysis and geometry of turbulence ◆ the problem of intermittency ◆ role of self similar fractals ◆ conjecture: the singularities of fluid motion are fractals ◆ singularities of other equations of physics ◆ concrete characterization of the support of intermittency ◆ the Novikov-Stewart cascade, an example of curdling ◆ fractally homogeneous turbulence ◆ consequences of the curds being "in-between" shapes ◆ fractal dimension of the curds' sections ◆ direct experimental reason for believing that intermittency satisfies D>2 ◆ nonrandom Cantor constructs in 3-space ◆ the Sierpiński sponge, a self similar knotted rope ◆ a dustlike fractal for which dimension is close to 3 ◆ the Sierpiński pastry shell, a self similar layered sheet ◆ "typical" sections tend to have the "wrong" dimension ◆ connectedness/percolation in random curdling ◆ canonical curdling ## VII. METEORITES, MOON CRATERS AND SOAP 175 lunar craters ♦ the problem of connectedness ♦ meteorites ♦ nonoverlapping spherical cutouts in space ♦ slow packing of E-space by nonoverlapping spheres ♦ fastest packing of the plane by nonoverlapping circles ♦ packing a triangle with inverted triangles ♦ "Apollonian" model of soap ## VIII. USES OF SELF CONSTRAINED CHANCE 189 self avoiding random walk and polymer geometry ◆ the Joseph and Noah Effects ◆ self avoiding polygons ◆ rivers' departure from a straight course ◆ fractals in physics ◆ Bernoulli percolation ◆ pseudo fractal sequences ◆ single-crystal smectic filaments ◆ superconductors # IX. FRACTIONAL BROWNIAN FACETS OF RIVERS, RELIEF, AND TURBULENCE 201 Joseph Effect and Hurst phenomenon ♦ persistent fractional Brownian motions ♦ on explaining ♦ fractional Brownian river outlines ♦ fractional Brownian planar trails ♦ Brownian relief on a flat Earth, and its coastlines ◆ global effects in Brownian space-to-line functions ◆ Brownian relief on a spherical Earth ◆ the horizon ◆ fractional Brownian relief on a flat Earth ◆ fractional Brownian model of river discharge, motivated ◆ fractional Brownian model of the relief, motivated ◆ projective island surfaces and the Korčak law ◆ deadvalleys and lakes ◆ antipersistent fractional Brownian motions ◆ isosurfaces of turbulent scalars: the problem stated ◆ the Kolmogorov and Burgers delta variances ◆ in homogeneous turbulence, isosurfaces are fractals | Χ. | MISCELLANY | 237 | |------|--|-----| | | computer organization ♦ linguistics and economics ♦ lexicographic trees and the law of word frequencies ♦ hierarchical trees and the Pareto law for salaries ♦ economics and "scaling" ♦ counterintuitive instances of statistical stationarity | | | XI. | BIOGRAPHICAL AND HISTORICAL SKETCHES | 249 | | | Louis Bachelier ♦ Brownian motion ♦ Cantor sets: postscript on forgotten very early applications ♦ Cantor sets: recent mentions of possible applications ♦ Edmund Edward Fournier d'Albe ♦ Harold Edwin Hurst ♦ Joseph Effect: postscript on little-known early examples ♦ Paul Lévy ♦ Lewis Fry Richardson ♦ Weierstrass function: historical sketch ♦ George Kingsley Zipf | | | XII. | MATHEMATICAL LEXICON & ADDENDA | 275 | | | BIBLIOGRAPHY | 333 | | | ACKNOWLEDGMENTS | 347 | | | INDEX | 349 | | | INDEX OF SELECTED DIMENSIONS | 362 |