## Contents

| Preface                                                    | v  |
|------------------------------------------------------------|----|
| Index of Symbols                                           | ix |
| Chapter 1. MEASURES                                        | 1  |
| Section 0. Set Theoretic Notations and Terminology         | I  |
| 1. Rings and $\sigma$ -Rings                               | 3  |
| 2. The Lemma on Monotone Classes                           | 6  |
| 3. Set Functions, Measures                                 | 8  |
| 4. Some Properties of Measures                             | 11 |
| 5. Outer Measures                                          | 13 |
| 6. Extension of Measures                                   | 19 |
| *7. Lebesgue Measure                                       | 22 |
| *8. Measurable Covers                                      | 24 |
| *9. Completion of a Measure                                | 28 |
| 10. The LUB of an Increasingly Directed Family of Measures | 31 |
| Chapter 2. MEASURABLE FUNCTIONS                            | 35 |
| 11. Measurable Spaces                                      | 35 |
| 12. Measurable Functions                                   | 36 |
| 13. Combinations of Measurable Functions                   | 40 |
| 14. Limits of Measurable Functions                         | 43 |
| 15. Localization of Measurability                          | 46 |
| 16. Simple Functions                                       | 48 |
|                                                            |    |

xvi Contents

| Chapter 3.  | SEQUENCES OF MEASURABLE FUNCTIONS                          | 52  |
|-------------|------------------------------------------------------------|-----|
| Section 17. | Measure Spaces                                             | 52  |
| 18.         | The "Almost Everywhere" Concept                            | 55  |
| 19.         | Almost Everywhere Convergence                              | 57  |
| 20.         | Convergence in Measure                                     | 59  |
| *21.        | Almost Uniform Convergence, Egoroff's Theorem              | 64  |
| Chapter 4.  | INTEGRABLE FUNCTIONS                                       | 70  |
| 22.         | Integrable Simple Functions                                | 70  |
| 23.         | Heuristics                                                 | 75  |
| 24.         | Nonnegative Integrable Functions                           | 76  |
| 25.         | Integrable Functions                                       | 81  |
| 26.         | Indefinite Integrals                                       | 88  |
| 27.         | The Monotone Convergence Theorem                           | 90  |
| 28.         | Mean Convergence                                           | 96  |
| Chapter 5.  | CONVERGENCE THEOREMS                                       | 100 |
| 29.         | Dominated Convergence in Measure                           | 100 |
| 30.         | Dominated Convergence Almost Everywhere                    | 102 |
| 31.         | The $\mathscr{L}^1$ Completeness Theorem                   | 103 |
| 32.         | Fatou's Lemma                                              | 105 |
| 33.         | The Space $\mathcal{L}^2$ , Riesz-Fischer Theorem          | 107 |
| Chapter 6.  | PRODUCT MEASURES                                           | 114 |
| 34.         | Rectangles                                                 | 114 |
| 35.         | Cartesian Product of Two Measurable Spaces                 | 117 |
| 36.         | Sections                                                   | 119 |
| 37.         | Preliminaries                                              | 123 |
| 38.         | The Product of Two Finite Measure Spaces                   | 124 |
| 39.         | The Product of Any Two Measure Spaces                      | 127 |
| <b>40</b> . | Product of Two σ-Finite Measure Spaces; Iterated Integrals | 134 |
| 41.         | Fubini's Theorem                                           | 142 |
| *42.        | Complements                                                | 144 |

|             | Contents                                                 | xvii |
|-------------|----------------------------------------------------------|------|
| Chapter 7.  | FINITE SIGNED MEASURES                                   | 149  |
| Section 43. | Absolute Continuity                                      | 149  |
| 44.         | Finite Signed Measures                                   | 151  |
| 45.         | Contractions of a Finite Signed Measure                  | 153  |
| <b>46</b> . | Purely Positive and Purely Negative Sets                 | 154  |
| 47.         | Comparison of Finite Measures                            | 156  |
| 48.         | A Preliminary Radon-Nikodym Theorem                      | 159  |
| 49.         | Jordan-Hahn Decomposition of a Finite Signed Measure     | 162  |
| 50.         | Domination of Finite Signed Measures                     | 165  |
| 51.         | The Radon-Nikodym Theorem for a Finite Measure Space     | 167  |
| 52.         | The Radon-Nikodym Theorem for a σ-Finite Measure Space   | 167  |
| *53.        | Riesz Representation Theorem                             | 169  |
| Chapter 8.  | INTEGRATION OVER LOCALLY COMPACT SPACES                  | 173  |
|             | Continuous Functions with Compact Support                | 173  |
|             | $G_{\delta}$ 's and $F_{\sigma}$ 's                      | 174  |
|             | Baire Sets                                               | 176  |
| <b>57</b> . | Borel Sets                                               | 181  |
| 58.         | Preliminaries on Rings                                   | 183  |
|             | Regularity                                               | 186  |
|             | Regularity of Baire Measures                             | 192  |
|             | Regularity (Continued)                                   | 194  |
| 62.         | Regular Borel Measures                                   | 200  |
| 63.         | Contents                                                 | 204  |
| 64.         | Regular Contents                                         | 210  |
| 65.         | The Regular Borel Extension of a Baire Measure           | 212  |
|             | Integration of Continuous Functions with Compact Support | 214  |
|             | Approximation of Baire Functions                         | 218  |
| *68.        | Approximation of Borel Functions                         | 220  |
| 69.         | The Riesz-Markoff Representation Theorem                 | 223  |
| *70         | Completion Regularity                                    | 230  |

xviii Contents

| Chapter 9. INTEGRATION OVER LOCALLY COMPACT GROU        | <b>PS</b> 235 |
|---------------------------------------------------------|---------------|
| Section 71. Topological Groups                          | 235           |
| 72. Translates, Haar Integral                           | 237           |
| 73. Translation Ratios                                  | 238           |
| 74. Existence of a Haar Integral                        | 242           |
| 75. A Topological Lemma                                 | 248           |
| 76. Uniqueness of the Haar Integral                     | 250           |
| 77. The Modular Function                                | 256           |
| 78. Haar Measure                                        | 259           |
| 79. Translates of Integrable Functions                  | 263           |
| 80. Adjoints of Continuous Functions with Compact Suppo | ort 265       |
| 81. Convolution of Continuous Functions with Compact So | upport 266    |
| 82. Adjoints of Integrable Functions                    | 269           |
| <b>83.</b> The operation $f \nabla g$                   | 273           |
| 84. Convolution of Integrable Baire Functions           | 275           |
| 85. Associativity of Convolution                        | 280           |
| *86. The Group Algebra                                  | 284           |
| *87. Convolution of Integrable Simple Baire Functions   | 288           |
| <b>88.</b> The domain of $f * g$                        | 292           |
| *89. Convolution of Integrable Borel Functions          | 295           |
| *90. Complements on Haar Measure                        | 299           |
| References and Notes                                    | 301           |
| Bibliography                                            | 305           |
| Index                                                   | 308           |