16

17

TABLE OF CONTENTS

Secti	on	Page
	PREFACE	vii
	TABLE OF CONTENTS	хi
	CHAPTER O: INTRODUCTION	
0.00	The real numbers	1
0.01	η_{ξ} -fields	2
0.02	The ξ -topology on an η_{ξ} -set	3
0.03	Conway's field No of surreal numbers	3
0.04	Valuation theory and surreal number fields	5
0.05	Neumann's theorem and hyper-convergence	5
0.06	The main theorem	6
0.07	Applications of the main theorem	7
0.10	Exposition versus research	7
0.11	References and indexing	9
0.20	Prerequisites	9
0.30	Acknowledgements	10
	CHAPTER 1: PRELIMINARIES	
1.00	Class theory and set theory	13

1.02 Well-ordered sets: Cantor's and von Neumann's ordinal numbers

1.01 Ordered sets and order types

1.03	Equipotent sets, choice, and cardinal numbers	20
1.10	The interval topology	23
1.11	The relative topology	24
1.20	Cuts and gaps	25
1.30	Cofinal and coinitial sets, characters and saturation	28
1.40	$\eta_{\xi}^{-\text{classes}}$	31
1.50	Compact ordered spaces	33
1.60	Ordered Abelian groups	33
1.61	Hahn valuations on ordered groups	40
1.62	Pseudo-convergent sequences in Abelian groups with valuation	47
1.63	Skeletons, Hahn groups, and extensions of ordered groups	50
1.64	Hahn's embedding theorem	53
1.65	Ordered direct sums in ξH	61
1.66	Complete and incomplete ordered groups	62
1.70	Ordered rings and fields	63
1.71	The Artin-Schreier theory of real-closed fields	66
1.72	Polynomials in one variable over real-closed fields	75
1.73	Rational functions in one variable over real-closed fields	78
1.74	Rolle's theorem and applications	82
1.75	Embedding an ordered field in a real-closed $\eta_\xi\text{-field}$	84
	CHAPTER 2: THE &-TOPOLOGY	
2.00	The interval topology on an n -class	85
	The interval topology on an η_{ξ} -class	0.5
2.01	The ξ-topology	85
2.02	A comparison of ξ -topologies and ω_{ξ} -additive spaces	90
2.10	The ξ -topology on ordered sets and classes	92
2.11	ξ -closed subclasses of X	94
2.12	The relative ξ-topology	94
2.13	On the possible non-existence of ξ -closures and ξ -interiors	96
2.20	The main theorem on ξ -connected subspaces of η_{ξ} -classes	97
2.21	That open subclasses of $\eta_\xi\text{-classes}$ are $\xi\text{-locally}$ connected	101
2.30	The main theorem on $\xi\text{-compact}$ subspaces of $\eta_\xi\text{-classes}$	101
2.31	ξ-compact subspaces that are not ξ-closed	103

	Table of contents	xiii
2.40	ξ-continuous maps of ordered classes	104
2.41	An additional theorem on ξ-continuous maps	106
	CHAPTER 3: THE &-TOPOLOGY ON AFFINE n-SPACE	
3.00	The strong topology and semi-algebraic sets	109
3.10	The affine line	111
3.20	The ξ -topology on R^n	112
3.21	ξ-continuous maps between affine spaces	112
3.30	ξ -connected subspaces of ξR^n	113
3.40	R as a topological field in the ξ-topology	114
3.41	R^{n} as a topological vector space over R, in the ξ -topology	115
3.42	The field C = R(i), as a topological field	115
3.43	Other examples of ξ -continuous maps	116
	CHAPTER 4: INTRODUCTION TO THE SURREAL FIELD No	
4.00	Surreal numbers	117
4.01	Conway's construction	119
4.02	The Cuesta Dutari construction of No	121
4.03	An abstract characterization of a full class of surreal numbers	127
4.04	Subtraction in No	131
4.05	Addition in No	133
4.06	Multiplication in No	138
4.07	Order and multiplication in No	141
4.08	The associative law for multiplication in No	149
4.09	On numbers given by refinements of (timely) Conway cuts	152
4.10	Properties of division in No	154
4.20	Distinguished subclasses of No	160 161
4.21	Elements of No having finite birthday	165
4.30	Mω	105
4.40	The map $x \in \mathbb{N}o \rightarrow \omega^{X} \in \mathbb{N}o^{+}$	168
4.41	Finite linear combinations of $\omega^{-x(1)}$,, $\omega^{-x(n)}$ over R	171

Norman	L.	Alling
--------	----	--------

xiv

4.50	The sign-expansion	175
4.51	The structure of Σ and the sign-expansion	178
4.52	The nearest common predecessor of a subclass of $\boldsymbol{\Sigma}$	180
4.53	The tree structure of a full class of surreal numbers	182
4.54	The predecessor cut representation of a surreal number	183
4.60	Alternative axioms for a full class of surreal numbers	184
4.61	Conway cuts, ordered by extension, and Cuesta Dutari cuts	189
	CHAPTER 5: THE SURREAL FIELDS ξNo, AND RELATED TOPICS	
5.00	The definition of ξNo	191
5.10	ξNo and Hausdorff's normal η_{ξ} -type	192
5.11	The cardinal number of ξΝο	192
5.20	The map $x \in \xi No \rightarrow \omega^{x} \in \xi No^{+}$	193
5.30	The structure of 0 $_{\omega}{}_{\lambda}$, for λ a limit ordinal	195
5.40	Rank, universes, galaxies, and Conway's construction	196
5.41	Another description of ENO	199
5.50	The Dedekind-completion of 0_{λ} , for a non-zero limit ordinal λ	200
5.51	The structure of D $_{\lambda}$	202
	, and the second se	
CHAP	TER 6: THE VALUATION THEORY OF ORDERED FIELDS, APPLIED TO No AND	ξNο
6.00	Introduction	207
6.01	Examples of fields with valuation	209
6.10	The valuation theory of ${\bf No}$ and $\xi {\bf No}$	211
6.20	Formal power series fields	213
6.21	A sketch of Hahn's proof	215
6.22	ξK((G))	217
6.23	Algebraic properties of $K((G))$ and $\xi K((G))$	217
6.30	Maximal fields with valuation	219
6.40	Pseudo-convergent sequences	221
6.41	Pseudo-convergent sequences in ξNo	223
6.42	Pseudo-convergent sequences in No	227

	Table of contents	xv
6.43	Normal forms and ω -power series in No	227
6.44	Pseudo-convergent sequences in $K((G))$ and $\xi K((G))$	232
6.50	Conway's normal form	235
6.51	The identity theorem for normal forms in No	239
6.52	The vector space structure of normal forms	240
6.53	Normal forms in ENo	242
6.54	Multiplication of normal forms in No	245
6.55	That ENo is R-isomorphic to a field of formal power series	246
6,56	No as the union of a family of formal power series fields	247
6.57	The canonical nature of the power series structure on No	248
6.60	That No is a universally embedding ordered field	248
6.70	The ideal theory of valuation rings	250
6.80	Bibliographic notes on chapter 6	252
0.00	, , , , , , , , , , , , , , , , , , ,	
	CHAPTER 7: POWER SERIES: FORMAL AND HYPER-CONVERGENT	
7 00	Introduction	255
7.00	Introduction Surcomplex number fields	255
7.10	Cx and formal power series	258
7.11	Neumann's lemma	260
7.20	A proof of Neumann's lemma	261
7.22	Neumann's theorem, Neumann series, and hyper-convergence	266
7.30	Applications of Neumann's theorem	268
7.31	The algebra of Neumann series	271
7.32	The form of an inverse in a formal power series field	272
7.33	The binomial series	272
7.34	Powers and values of Neumann series	275
7.35	Composition of Neumann series	277
7.36	The exponential series and the logarithmic series	278
7.40	Formal power series rings in a finite number of variables	280
7.41	Neumann series in a finite number of variables	281
7.50		284
7.51	and complex constant fields	285
7.60	a a a a a a a a a a a a a a a a a a a	288
7.61	a little Romations T	289
7.62	_	290
, , , , ,		

7.63	The interval topology and the valuation topology	292
7.64	The modified valuation topology and the $\xi\text{-topology}$ on $\eta_\xi\text{-fields}$	292
7.65	Infinitesimal extensions of analytic functions, II	295
7.70	The formal implicit function theorem in two variables	296
7.71	The formal implicit function theorem in n variables	298
7.72	The formal implicit mapping lemma	301
7.73	The formal implicit mapping theorem and the Jacobian	303
7.74	The formal inverse mapping theorem	304
7.75	Related theorems on Neumann series	306
7.80	Formal power series fields over formal power series fields	309
7.81	Decomposition of certain formal power series fields	314
7.82	The main theorem	314
7.83	Independence of representation	318
7.84	Prime disks of hyper-convergence of formal power series	320
7.90	An interesting example	321
7.91	From Maclaurin series to Taylor series	322
7.92	From Maclaurin series to Taylor series over L, I	323
7.93	From Maclaurin series to Taylor series over L, II	327
	CHAPTER 8: A PRIMER ON ANALYTIC FUNCTIONS OF A SURREAL VARIABLE	
8.00	Introduction	333
8.01	Local properties of power series in one variable, I	336
8.02	Local properties of power series in one variable, II	341
8.03	Local properties of power series in one variable, III	342
8.04	Local properties of power series in one variable, IV	345
8.05	Local theory of analytic functions of one surreal variable	347
8.10	Local properties of power series in several variables	349
	BIBLIOGRAPHY	353

INDEX 359