CONTENTS

	n the preface to the Hungarian edition	17
Fore	eword to the English edition	21
Hist	orical overview	23
	PART ONE	
	INTRODUCTION TO THE THEORY OF REAL FUNCTIONS	
	CHAPTER 1: ELEMENTS OF SET THEORY	
1.1	Set relations, operations with sets and characteristic functions	27
1.2	Countable and non-countable sets	30
1.3	Comparison of cardinals and theorem of equivalence	34
1.4	Sets of higher cardinality, transfinite cardinals	36
1.5	Important set structures: Boolean and sigma-rings	40
1.6	Simple applications in elementary analysis	42

CHAPTER 2: POINT SETS IN EUCLIDEAN SPACES

2.1	Distance and neighbourhood in space E_{ν}	47
	2.11 Distance of points in E_{ν} , fundamental inequalities – 2.12 Neighbourhood of a point and some ideas connected with that – 2.13 Topological mapping, foundations of the general theory of curves and surfaces, C. Jordan's curve theorem	
2.2	Convergence and clustering point of a sequence of points	50
	2.21 Fundamentals on convergent sequences of points, Cauchy's criterion - 2.22 Clustering point, upper and lower limit - 2.23 Connection between the notions of convergence and clustering point	
2.3	Notions and theorems concerning derivate sets	53
	2.31 Accumulation point of a point set, the Bolzano-Weierstrass theorem, compactness - 2.32 Condensation point, Lindelöf's theorem - 2.33 Derivate of a point set and related notions - 2.34 Closure of a set - 2.35 Perfectness of the set of condensation points - 2.36 On the cardinality of sets consisting of accumulation and condensation points	
2.4	Basic properties of closed and open sets	57
	2.41 Closure and boundary points – 2.42 Openness and related concepts – 2.43 Principle of duality; union and meet of closed and open sets – 2.44 The normal representation of a linear open set – 2.45 Cantor's ternary set	
2.5	The Cantor-Bendixson theorem, Cantor's meet theorem	62
	2.51 Distance of point sets - 2.52 The theorem of Cantor and Bendixson - 2.53 Diameter of a point set and the meet theorem of Cantor	
2.6	Covering theorems, outer measures, null sets	65
	2.61 Borel's covering theorem - 2.62 Jordan's and Lebesgue's outer measure - 2.63 Null sets - 2.64 Elementary properties of outer measures - 2.65 Sierpinski's lemma and Vitali's covering theorem	
	CHAPTER 3: EXTENSION OF THE CONCEPT OF FUNCTION.	
	LIMIT, CONTINUITY AND DIFFERENTIABILITY OF A	
	POINT FUNCTION	
3.1	Functions on abstract sets (operators) and their classification	73
	3.11 The general concept of function, Cantor's theorem on the cardinality of operator sets - 3.12 Classification of operators; linearity, boundedness and norm of a functional (functional operation) - 3.13 The notion of linear operator	
3.2	Limit and cluster value of a point function, relating to a set	76
	3.21 The limit of a point function at an accumulation point of the basic set – 3.22 Cluster value (sublimit) of a point function, upper and lower limit – 3.23 Upper and lower fluctuation value – 3.24 The analogue of Cauchy's criterion,	
	operations with generalized limits	
3.3	operations with generalized limits Properties of continuous and semi-continuous point functions	80

3.4	The approximation theorems of Weierstrass; Stone's theorem	83
	3.41 The two approximation theorems of Weierstrass $-$ 3.42 Uniform approximation on a prescribed set by elements of some class of functions, Stone's theorem $-$ 3.43 Conclusions and remarks	
3.5	Sequences and series of continuous point functions	88
	3.51 Uniform convergence on some set of sequence or series of point functions, the Weierstrass criterion - 3.52 Use of uniform convergence in case of continuous functions, quasi-uniform convergence - 3.53 Baire's and Young's classes of functions	
3.6	Generalized differentiability, derivate numbers	91
	3.61 Total and partial differential, differential coefficients of a point function - 3.62 Generalized derivate numbers - 3.63 Geometric interpretation, main properties of differentiable functions	
3.7	Constructing everywhere continuous, nowhere differentiable functions	94
	3.71 Historical remarks, example of Weierstrass - 3.72 An elementary example of a function continuous everywhere whose derivative does not exist at any point - 3.73 Extension of the latter construction, further developments	
	CHAPTER 4: MONOTONIC, ABSOLUTELY CONTINUOUS FUNCTIONS AND FUNCTIONS OF BOUNDED VARIATION	
4.1	Basic properties, continuous and pure jumping part of a monotonic function	99
	4.11 Monotony and the existence of one-sided limits - 4.12 Constructing a pure saltus function with prescribed jumps - 4.13 Decomposition of an arbitrary bounded monotonic function into continuous and pure jumping part - 4.14 Continuity almost everywhere of a monotonic function	
4.2	Differentiability almost everywhere of monotonic functions	103
	4.21 Lebesgue's theorem on monotonic functions (Proof after Rajchman and Saks) - 4.22 Historical comments	
4.3	Applications; Fubini's theorem for series of functions	106
	4.31 The Denjoy-Saks-Young theorem on derivate numbers – 4.32 Theorem of Fubini on term-by-term differentiation of a series of monotonic functions	
4.4	Functions of bounded variation, the notion of total variation	108
	4.41 Rectifiable curves and functions of bounded variation; the total variation - 4.42 Some elementary observations, additivity of total variation - 4.43 Closure of the class of functions of bounded variation with respect to the fundamental operations	
4.5	Jordan's and Lebesgue's theorems on functions of bounded variation	111
	4.51 Jordan's theorem: representation of a function of bounded variation by means of monotonic functions - 4.52 Consequences, the theorem of Lebesgue - 4.53 Example of a monotone increasing and continuous, non-constant function with derivative vanishing almost everywhere	

4.6	Absolutely continuous functions	113
	CHAPTER 5: JORDAN MEASURE AND RIEMANN INTEGRAL. RIEMANN-STIELTJES INTEGRAL	
5.1	Foundations of Jordan's manages theory	119
9.1	Foundations of Jordan's measure theory	119
5.2	Riemann integral of a function of one variable as Jordan measure with	
	sign; upper and lower Darboux integral	122
	5.21 Connection between Riemann's integral concept and Jordan's theory of measure - 5.22 Darboux integrals and limit definition of the Riemann integral	
5.3	Riemann's and Lebesgue's criteria for (R)-integrability	125
	5.31 Oscillation sum and Riemann integral – 5.32 Lebesgue's criterion: continuity almost everywhere of a Riemann integrable function	
5.4	Deeper study of (R) -integrable functions; limiting process under the (R) -	
	integral sign 5.41 The role of the class of (R)-integrable functions in elementary analysis 5.42 Operations with (R)-integrable functions; problem of passage to the limit term-by-term - 5.43 Example of a sequence (or series) of (R)-integrable functions whose limit (sum) is not (R)-integrable	128
5.5	Use of a primitive; properties of the indefinite (R)-integral	131
	5.51 The Leibniz-Newton formula for an arbitrary (R) -integrable function – 5.52 Investigation of the existence of a primitive – 5.53 Properties of (R) -integral functions – 5.54 Connection between the operations of (R) -integration and differentiation – 5.55 Volterra's example of a function differentiable in some closed interval whose derivative is bounded but not (R) -integrable	
5.6	Improper (R)-integral and Riemann integral of several dimensions	136
	5.61 Kinds of improper (R)-integrals – 5.62 (R)-integral on a region in the space E_{ν} – 5.63 Iterated (R)-integration, extended integral mean	
5.7	The Stieltjesian generalization of Riemann integral	138
	5.71 Mathematical and physical background of the extension due to Stieltjes	
	- 5.72 Definition of the (RS)-integral; calculation of $\int_a^b f(x) dg(x)$ if $f(x)$ is	
	continuous and $g(x)$ is a step function - 5.73 Additivity, integration by parts	
	for (RS)-integrals - 5.74 Conditions for existence of $\int_a^b f dg$; the cases when	
	the integrator function g is monotonic, of bounded variation or absolutely continuous – 5.75 Main properties of the (RS) -integral, mean value theorems	
5.8	Connection of (RS)-integrals with (R)-integrals; Radon's and Burkill's	
	integral	145

5.81 Transforming $\int_{a}^{b} f(x) dg(x)$ into an (R)-integral if g'(x) exist and is (R)-integrable – 5.82 (RS)-integral of several dimensions (Radon's integral), derivative with respect to a region and the notion of density – 5.83 Burkill integral of an interval function as a generalized (RS)-integral

CHAPTER 6: LEBESGUE'S MEASURE AND INTEGRAL. MEASURABLE FUNCTIONS

6.1	Elements of Lebesgue's measure theory	149
	6.11 Defects of Riemann's concept of integral, the need of its developing – 6.12 Lebesgue measurable sets. Lebesgue measure in the space E_{ν} – 6.13 Basic properties of $\mu_L(S)$ – 6.14 Total additivity of the (L) -measure	
6.2	Geometric introduction of the Lebesgue integral of a function of one variable; upper and lower Young integrals	154
	6.21 (L)-integral of a non-negative function as the (L)-measure of an ordinate set, Young integrals – 6.22 Extension to bounded function of arbitrary sign –6.23 Some elementary features of the (L)-integral	
6.3	Lebesgue's original definition for the (L) -integral of a bounded function; (L) -integrability and measurability	157
	6.31 Definition of the (L) -integral by means of Lebesgue sums, the connection of the latter with Young sums -6.32 The notion of measurable function, level sets -6.33 Equivalence of the (L) -integrability and measurability of a bounded function	
6.4	Other definition forms; fundamental idea of the treatment due to F. Riesz	163
	6.41 Limit definition of the (L) -integral – 6.42 Use of (L) -integrals formed from characteristic functions – 6.43 The Riesz theory of (L) -integral	
6.5	Comparison of Lebesgue's concept of integral with that of Riemann; properties of measurable functions	165
	6.51 (L)-integrability and (R)-integrability – 6.52 Basic properties of measurable functions – 6.53 Closure with respect to the limit operation	
6.6	Almost uniform approximation of a measurable function by measurable functions; relationship between measurability and continuity	168
	6.61 Almost uniform convergence, Egorov's theorem - 6.62 Lusin's theorem - 6.63 "Correction" of a measurable function to a continuous one	
	CHAPTER 7: PROPERTIES OF THE LEBESGUE INTEGRALS	
7.1	Fundamental properties of the (L) -integral of a bounded function over a measurable set \ldots	173
	7.11 (L)-integral taken on a set -7.12 (L)-equivalence, basic properties, mean value theorems -7.13 Absolute (total) continuity of the (L)-integral -7.14 Total additivity of the (L)-integral	

7.2	Integration of sequences and series of functions	176
	7.21 The limit theorem of Lebesgue $-$ 7.22 Convergence with respect to (L) -measure $-$ 7.23 Term-by-term integration of a series consisting of measurable functions and Arzelà's theorem	
7.3	Indefinite (L)-integral with bounded integrand and the notion of primitive	179
	7.31 Calculation of an (L) -integral by means of a primitive – 7.32 Determination of primitives for a bounded function by (L) -integral functions, notion of Lebesgue point – 7.34 The role of Lischitz condition in the theory, relation between (L) -integration and differentiation	
7.4	(L)-integral with unbounded basic set or integrand	183
	7.41 Extension of Lebesgue's integral definition, generalized Lebesgue sum $-$ 7.42 Reduction of the (L) -integral of an unbounded function to the case of bounded integrand $-$ 7.43 Remarks on (L) -integrability in wider sense, the class $L(S)$	
7.5	Passage to the limit under the sign of a generalized (L)-integral	187
	7.51 Lebesgue's main theorem on integration of a sequence of functions – 7.52 Fatou's lemma and the theorem of B. Levi – 7.53 A pendant of uniform continuity in the class $L(S)$	
7.6	Theorems on arbitrary (L)-integral functions	194
	7.61 Extension of the Leibniz-Newton formula – 7.62 (L)-integrating the derivative of a function of bounded variation – 7.63 Absolute continuity of an arbitrary (L)-integral function – 7.64 Derivation of the indefinite (L)-integral and Lebesgue points – 7.65 Absolute continuity as a characteristic property, the total variation of an (L)-integral function – 7.66 (L)-integral function of an unbounded derivative, extensions of the (L)-integral due to Denjoy and Perron – 7.67 Integration by parts and by substitution for (L)-integrals	
7.7	(L)-integral of several dimensions; Fubini's theorem on successive integration	203
	7.71 (L)-integral of a point function of several variables, Fubini's theorem for double (L)-integrals -7.72 Remarks on the generalization of Lebesgue's theory.	200
	CHAPTER 8: MEASURES DEFINED ON BOOLEAN RINGS AND THE ABSTRACT LEBESGUE INTEGRAL. LEBESGUE-STIELTJES INTEGRAL	
8.1	Extension of measures, Carathéodory's theorem	205
	8.11 Introduction - 8.12 Measure and measure space defined on a Boolean ring - 8.13 The notion of completeness and Borel's measure; closure of a measure space -8.14 Generating an abstract measure by means of an outer measure induced by premeasure - 8.15 Carathéodory's extension theorem, Lebesgue's continuation of premeasure	
8.2	Lebesgue integral on abstract measure space	208
	8.21 Measurability of a function on abstract space, analogues of the abstract Lebesgue integral $-$ 8.22 Definition of the abstract Lebesgue integral $-$ 8.23 Properties of abstract (L)-integrals, Daniell integral	

8.3	Lebesgue-Stieltjes measure and integral	211
	8.31 The Lebesgue-Stieltjes measure as a particular case of the notion of abstract measure -8.32 (LS)-integral and its connection with the (RS)-integral -8.33 Relation between (LS)-integral and (L)-integral -8.34 Integration by parts and transformation of (LS)-integrals -8.35 Development of the theory of (LS)-integral, applications in probability theory	
8.4	Measures and integrals on product spaces	217
8.5	Fubini's theorem for product spaces; connections with probability theory 8.51 Preliminaries on μ -measures - 8.52 The theorem of Fubini for abstract Lebesgue integrals - 8.53 Use of the notions of this chapter in Kolmogorov's construction of probability theory	221
	PART TWO	
	FUNCTION SPACES AND ORTHOGONAL EXPANSIONS	
	CHAPTER 9: FOUNDATIONS OF FUNCTIONAL ANALYSIS. THE SPACES l^2 AND L^2	
9.1	Orthogonal series and functional analysis	229
9.2	Vectorial interpretation of the Euclidean space E_{ν}	231
9.3	Transfer of fundamental ideas to the Hilbert space l^2	235
9.4	Further generalization: the function space L^2 as a vector field 9.41 The Hilbert space of square integrable functions – 9.42 Vectorial basic operations, norm, fundamental inequalities – 9.43 Notions issuing from norm and orthogonality – 9.44 Example of an incomplete orthonormal system of functions	238
9.5	Introduction of the notions of distance and convergence in space L^2 9.51 Distance and L^2 -convergence – 9.52 Comparison of the L^2 -convergence with uniform and pointwise convergence – 9.53 The Riesz-Fischer convergence criterion – 9.54 Strong and weak convergence – 9.55 The space L^2 as a set of abstract points	243
9.6	The problem of decomposition and the concept of general Fourier series 9.61 Decomposition of an element of the space L^2 in terms of a given orthogonal system - 9.62 The formal determination of coefficients - 9.63 General	250

,

Fourier series. - 9.64 Parallelism between fundamental notions of the theory of orthogonal series and their geometric analogues

CHAPTER 10: SPECIAL ORTHOGONAL SYSTEMS AND SERIES

10.1	The trigonometric base system	255
	10.11 Orthogonality of the trigonometric base system - 10.12 Lagrange's lemma - 10.13 Completeness of the trigonometric system, the cosine and sine system	
10.2	The ordinary (trigonometric) Fourier series and its complex form 10.21 Ordinary Fourier coefficients and Fourier series - 10.22 Complex form of the ordinary Fourier series - 10.23 Connection with complex power series and Laurent series	259
10.3	Legendre polynomials	262
	10.31 Existence of a sequence of polynomials orthogonal in a finite interval - 10.32 Representation of Legendre polynomials by means of a Rodrigues formula - 10.33 Some important properties of the Legendre polynomials - 10.34 Generating function - 10.35 Recurrence formula and differential equation - 10.36 Norm and minimum property, Legendre series	
10.4	Properties of polynomial systems orthogonal with respect to weight func-	
	tions	270
	10.41 Definition of the weighted orthogonality of polynomial sequences – 10.42 Recursive representation of orthogonal polynomials belonging to a given interval and to a prescribed weight function – 10.43 Basic features, minimum property – 10.44 Some pertinent abbreviations and notations, the class $L_{\rho(x)}^2(a,b)$	
10.5	Jacobi, Laguerre and Hermite polynomials	276
	10.51 Tchebyshev polynomials of the first and second kind, Tchebyshev's approximation – 10.52 Generalization: Gegenbauer (ultraspherical) and Jacobi (hypergeometic) polynomials – 10.53 Infinite basic intervals: Laguerre and Hermite polynomials – 10.54 Outline of the classical systems of orthogonal polynomials – 10.55 Generating functions and norms – 10.56 Fourier series relating to the classical orthogonal polynomial systems	
10.6	Orthogonal systems arising from differential equations of Sturm-Liouville	
	type	282
	10.61 Main types of Sturm-Liouville boundary value problems - 10.62 Orthogonality of eigenfunctions - 10.63 Example: discussion of the differential equation of harmonic oscillation - 10.64 The orthogonal system formed from Bessel functions of the first kind, Fourier-Bessel series - 10.65 Main properties of orthogonal systems of Sturm-Liouville type, Sturm-Liouville series	
10.7	The Gram-Schmidt orthogonalization procedure	287
	10.71 Orthogonalization in the space $L^2(a,b)$ – 10.72 Expansion of an "arbitrary" function in terms of a system of functions prescribed "optionally"	
10.8	Applications: systems of Haar's type, Rademacher and Walsh functions	290
	10.81 Closure of an orthonormal system; complete orthogonal polynomial sequences obtained by orthogonalization – 10.82 Generating the Haar system from characteristic functions belonging to the dyadic partition of $[0,1]-10.83$	
	Completeness of Haar's system – 10.84 The related $\{\mu_{k_1\cdots k_{\nu}}^{(r)}\}$ family of orthogonal functions – 10.85 Rademacher's orthonormal system and its importance in	

probability theory ~ 10.86 Extension of the Rademacher system due to Walsh, generalized Walsh systems and series

CHAPTER 11: PROPERTIES OF ARBITRARY ORTHOGONAL SYSTEMS AND SERIES IN HILBERT'S FUNCTION SPACE

11.,	11.11 Preliminary comments - 11.12 Fundamental identity for partial sums of orthogonal series - 11.13 Minimum property of the partial sums of general Fourier series and Bessel's identity - 11.14 Idea of approximation with respect to square integral (Bessel's approximation)	299
11.2	Bessel's inequality and the Parseval-Hurwitz formula	30
11.3	Parseval-Hurwitz formula and its extended form - 11.23 Historical remarks L ² -convergence of general Fourier series	303
	11.31 The general expansion theorem - 11.32 Consequences	
11.4	The Riesz-Fischer theorem: isomorphy of Hilbert's function space and sequence space	304
	11.41 Characterization of the elements of L^2 by a countable number of data – 11.42 The fundamental theorem of F. Riesz and E. Fischer – 11.43 The isomorphic connection of L^2 and l^2	
11.5	Convergence almost everywhere of arbitrary orthogonal series	307
11.6	The convergence and summation problem of general Fourier series 11.61 The integral form of a partial sum of the general Fourier series and its kernel function - 11.62 The notions of Lebesgue function and singular integral - 11.63 Pertinent observations	310
	CHAPTER 12: CONVERGENCE OF SPECIAL FOURIER SERIES	
12.1	Elementary convergence theorems on ordinary Fourier series; the Riemann-Lebesgue lemma	313
12.2	Dirichlet's formula and Riemann's localization theorem	319
12.3	Convergence tests of Dini, Dirichlet, Jordan and Lipschitz	323

12.4 Example of a continuous function with ordinary Fourier series divergent at some point	329
12.41 Representation by Fourier series and continuity – 12.42 Uniform continuity of partial sums of the series $\sum (\sin nx)/n - 12.43$ The Weierstrass example – 12.44 Du Bois-Reymond singularity and Schwarz's example – 12.45 On points of divergence of the ordinary Fourier series of a continuous function	
12.5 The problem of uniqueness; term-by-term integrability of ordinary Fou-	995
rier series	335
	339
12.61 The notion of conjugate series and integral form of its partial sums - 12.62 Convergence criterion of Pringsheim - 12.63 Consequences, theorem of F. Lukács	
12.7 Ordinary Fourier series of some special functions and harmonic analysis	342
12.71 The function $\{x\}$ – 12.72 Bernoulli polynomials and their applications – 12.73 The Hurwitz zeta function and Hurwitz's formula – 12.74 Development of $\cos(vx)$ into cosine series and expansion of cotangent in terms of partial fractions – 12.75 Fourier series of $ \sin x $ – 12.76 Lerch's zeta function and its functional equation – 12.77 Remarks on harmonic analysis; generation of Bessel functions by complex Fourier series	
12.8 Series of Haar's type; equiconvergence theorems for Sturm-Liouville se-	
12.81 Representation of continuous functions by Haar's series – 12.82 Proof of Haar's expansion theorem on the basis of the connection between Haar's system and some system of characteristic functions – 12.83 Convergence theorem for Fourier series of type $\mu_{k_1k_n}^{(r)}$ – 12.84 Haar's equiconvergence theorem and its	355
analogues for series of Sturm-Liouville type	
CHAPTER 13: SUMMATION OF ORDINARY FOURIER SERIES	
13.1 Linear summation methods and problems of Tauber's type	361
13.11 Introductory observations – 13.12 Foundations of the general theory of summation processes – 13.13 Classical summation methods: Cesàro's, Hölder's and Abel-Poisson summation – 13.14 Historical comments on the development of linear methods of summation – 13.15 Tauberian problems, theorem of Hardy and Landau	
13.2 (C,1)-summation of ordinary Fourier series; Fejér's fundamental and	
approximation theorem 13.21 Closed form for the arithmetic means of the partial sums of ordinary Fourier series: Fejér's integral – 13.22 The summation theorems of L. Fejér	369
13.3 Some consequences of Fejér's theorem	372
13.31 Applications relating to the limit of partial sums and to the codomain of their arithmetic means for ordinary Fourier series – 13.32 The Gibbs phenomenon – 13.33 Concluding from the $(C, 1)$ -summability of Fourier series to its convergence and to the approximation theorem of Weierstrass	

13.4	Lebesgue's summation theorem and other generalizations	376
	Summation of ordinary Fourier series by the Abel-Poisson method 13.51 Poisson's integral formula and its simplest consequences - 13.52 A sufficient condition for (A)-summability of Fourier series - 13.53 Connection with Cesàro's summation and with Dirichlet's problem in the plane	380
13.6	3 Application of the recent (D)-method	384
	CHAPTER 14: FOURIER INTEGRALS	
14.1	Foundations of the theory of integral transforms of Fourier and related type	395
149	as of Fourier's integral theorem and inversion formulae	200
14.2	Fourier transformation in Hilbert's function space	398
14.3	Properties of absolutely convergent Fourier transforms	408
14.4	Fourier's integral theorem on classical convergence conditions	414
14.5	Non-absolutely convergent Fourier integrals 14.51 The fundamental problem - 14.52 A general equiconvergence theorem - 14.53 Invertibility of non-absolutely convergent Fourier transforms - 14.54 Complementary results; generalization of Poisson's summation formula	423
14.6	Fourier-Stieltjes transforms	432

CHAPTER 15: FURTHER ABSTRACT SPACES, APPLICATIONS

15.1 Complex L ^p -spaces of F. Riesz	437
15.11 Grounds for a common extension of $L(a,b)$ and $L^2(a,b) - 15.12$ Main points of the theory of complex L^p -spaces – 15.13 Riesz's theorems on bounded linear functionals – 15.14 The sequence spaces l^p of Riesz	
15.2 Linearity, metrics and completeness; Banach's fixed point theorem	441
15.21 The most important structural properties of abstract spaces - 15.22 General concept of linear (vector) space as well as of metric and complete space - 15.23 The Banach fixed point theorem for complete metric spaces	
15.3 Abstract Hilbert space and Neumann's foundation of quantum mechanics	444
15.31 The abstract Hilbert space H as a common generalization of L^2 and l^2 – 15.32 The Fréchet-Riesz theorem on linear operators in H and spectral decomposition theorem – 15.33 Linear algebraical interpretation of the theory – 15.34 Applications: equivalence of matrix and wave mechanics, the foundations of quantum mechanics by J. Neumann – 15.35 On the use of Dirac's impulse δ and related operators	
15.4 Banach space; concept of general topological space	450
15.41 The Banach space B as a further extension of H and the spaces L^p ; theorem of J. Neumann and P. Jordan – 15.42 Linear operators in B , dual Banach spaces – 15.43 Operator pendant of the geometric series (Neumann's series) – 15.44 General topological space and problem of metrization	
15.5 Extended applications concerning ordinary differential equations	454
15.51 Introductory comments – 15.52 General form of self-adjoint eigenvalue problems – 15.53 Extended orthogonality relations for eigenfunctions – 15.54 Transformation of self-adjoint eigenvalue problems into integral equations via Green functions	
15.6 Partial differential equations and orthogonal series	457
15.61 Solution of the problem of homogeneous vibrating string by Fourier's method - 15.62 Case of inhomogeneous string, use of Sturm-Liouville series - 15.63 Discussion of Dirichlet's problem in the plane by harmonic series of functions - 15.64 The Laplace (potential) equation in space; spherical harmonics and Laplace series - 15.65 Fourier's solution of the problem of linear heat conduction and of similar problems - 15.66 Membrane vibration and Fourier-Bessel series; boundary problems of further partial differential equations of second order in physics	
15.7 Solving integral equations by operator methods	465
15.71 Linear integral equation of Fredholm type - 15.72 C.G. Neumann's existence and expansion theorem; Fredholm's alternative - 15.73 Case of symmetric kernel function, the Hilbert-Schmidt expansion theorem	
BIBLIOGRAPHY	47
INDEX	48: