CONTENTS

Preface.

CHAPTER I. A Duality in Integral Geometry.	
§1. Generalities.	4
 Notation and Preliminaries Principal Problems 	•
§2. The Radon Transform for Points and Hyperplanes.	Ş
 The Principal Results The Kernel of the Dual Transform The Radon Transform and its Dual on the K-types Inversion of the Dual Transform The Range Characterization for Distributions and Consequences Some Facts about Topological Vector Spaces 	28 28 28
§3. Homogeneous Spaces in Duality.	34
 The Radon Transform for a Double Fibration The Radon Transform for Grassmannians The Totally Geodesic Radon Transform on Constant Curvature Spaces 	34 43 50
A. The Generalized Transforms	50
B. The Inversion Formulas	51
C. Support Theorems	56
4. The d-Plane Transform5. Analogy with the Poisson Integral	59 64
Exercises and Further Results.	66
Notes.	72

CHAPTER II. A Duality for Symmetric Spaces.	75
§1. The Space of Horocycles.	76
1. Definition and Coset Representation	76
2. The Isotropy Actions for X and Ξ	78
3. Geodesics in the Horocycle Space	82
§2. Invariant Differential Operators.	87
1. The Isomorphisms	87
2. Radial Part Interpretation	91
3. Joint Eigenspaces and Eigenspace Representations	93
4. The Mean Value Operators	94
§3. The Radon Transform and its Dual.	100
1. Measure-theoretic Preliminaries	100
2. Integral Transforms and Differential Operators	103
3. The Inversion Formula and the Plancherel Formula	
for the Radon Transform	108
4. The Poisson Transform	118
5. The Dual Transform and the Poisson Kernel	121
§4. Finite-dimensional Spherical and Conical	
Representations.	124
1. Conical Distributions. Elementary Properties	124
2. Conical Functions and Finite-dimensional	
Representations	132
3. The Finite-dimensional Spherical Representations	139
4. Conical Models and Spherical Models	141
5. Simultaneous Euclidean Imbeddings of X and of Ξ .	
Horocycles as plane sections	143
6. Restricted Weights	148
7. The Component $H(\overline{n})$	151
§5. Conical Distributions.	154
1. The Construction of $\Psi'_{\lambda,s}$	154
2. The Reduction to Rank One	158
3. The Analytic Continuation of $\Psi_{\lambda,s}$	162
4. The Determination of the Conical Distributions	173
§6. Some Rank-One Results.	179
1. Component Computations	179
2. The Inversion of \overline{N}	182
3. The Simplicity Criterion	188
4. The Algebra $\mathbf{D}(K/M)$	191
4. The Algebra $\mathbf{D}(K/M)$	191

CONTENTS	ix
----------	----

	5. An Additional Conical Distribution for $\lambda=0$ 6. Conical Distributions for the Exceptional λ	192 195
Ex	ercises and Further Results.	205
No	tes.	218
CH	APTER III. The Fourier Transform on a Symmetric Space.	221
§ 1.	The Inversion and the Plancherel Formula.	222
	1. The Symmetry of the Spherical Function	222
	2. The Plancherel Formula	227
§ 2.	Generalized Spherical Functions (Eisenstein Integrals).	233
	1. Reduction to Zonal Spherical Functions	233
	2. The Expansion of $\Phi_{\lambda,\delta}$	240
	3. Simplicity (preliminary results)	248
§ 3 .	The \mathbf{Q}^{δ} -matrices.	250
	1. The K-finite functions in $\mathcal{E}_{\lambda}(\Xi)$	250
	2. Connections with Harmonic Polynomials	252
	3. A Product Formula for $\det(Q^{\delta}(\lambda))$ (preliminary version)	256
§ 4.	The Simplicity Criterion.	263
§ 5.	The Paley-Wiener Theorem for the Fourier Transform	
	on $X = G/K$.	269
	1. Estimates of the Γ -coefficients	270
	2. Some Identities for \mathbf{C}_s	273
	3. The Fourier Transform and the Radon Transform.	
	K-types	275
	4. Completion of the Proof of the Paley-Wiener Theorem.	070
	The Range $\mathcal{E}'(X)^{\sim}$	278
	5. A Topological Paley-Wiener Theorem for the K-types	283
	6. The Inversion—and the Plancherel Formula for the	290
	δ -spherical Transform	200
§ 6.	Eigenfunctions and Eigenspace Representations.	293
	1. The K-finite Eigenfunctions of $\mathbf{D}(X)$	294
	2. The Irreducibility Criterion for the Eigenspace Repre-	905
	sentations on G/K	295
§ 7 .		005
3.	Tangent Space Analysis.	297
3	Tangent Space Analysis. 1. Discussion	297 297 298

CONTENTS

x

	3. Generalized Bessel Functions and Zonal Spherical	
	Functions	304
	4. The Fourier Transform of K-finite Functions	306
	5. The Range $\mathcal{D}(\mathfrak{p})^{\sim}$ inside $\mathcal{H}(\mathfrak{a}^* \times K/M)$	312
§ 8.	Eigenfunctions and Eigenspace Representations on X_o .	314
	1. Simplicity	314
	2. The K-finite Joint Eigenfunctions of $\mathbf{D}(G_o/K)$	317
	3. The Irreducibility Criterion for the Eigenspace Repre-	
	sentations of G_o/K	324
§ 9.	The Compact Case.	325
	1. Motivation	325
	2. Compact Symmetric Spaces	327
	3. Analogies	331
	4. The Product Decomposition	332
§ 10	. Elements of $\mathbf{D}(G/K)$ as Fractions.	338
§11	. The Rank One Case.	343
•	1. An Explicit Formula for the Eisenstein Integral	343
	2. Harmonic Analysis of K-finite Functions	349
§ 12	. The Spherical Transform Revisited.	352
	1. Positive Definite Functions	352
	2. The Spherical Transform for Gelfand Pairs	357
	3. The Case of a Symmetric Space G/K	364
Exercises and Further Results.		370
No	tes.	376
(CHAPTER IV. The Radon Transform on X and on X_0 .	
		381
1	Range Questions.	301
§ 1.	The Support Theorem.	381
§ 2.	The Ranges $\mathcal{D}(\mathbf{X})^{\wedge}$ and $\mathcal{E}'(\mathbf{X})^{\wedge}$ and $\mathcal{E}(\Xi)^{\vee}$.	384
§ 3.	The Range and Kernel for K -types.	388
	1. The General Case	388
	2. Examples: H ² and R ²	393
§ 4.	The Radon Transform and its Dual for K-invariants.	396
§ 5.	The Radon Transform on X_o .	399
	1. Preliminaries	399

хi

9. The Cupport Theorem	405
2. The Support Theorem3. The Range and the Kernel for the K-types	407
4. The Ranges $\mathcal{E}'(X_o)^{\wedge}$ and $\mathcal{E}(\Xi_o)^{\vee}$	408
4. The runges 5 (110) and 5 (-0)	
Exercises and Further Results.	411
	412
Notes.	
CHAPTER V. Differential Equations on Symmetric Spaces.	413
§1. Solvability.	413
1. Fundamental Solution of D	414
2. Solvability in $\mathcal{E}(X)$	415
3. Solvability in $\mathcal{E}'(X)$	419
	420
	420
1. The Mean Value Operators	423
2. Approximations by Analytic Functions3. Ásgeirsson's Mean Value Theorem extended to Homo-	
geneous Spaces.	425
	429
·	429
1. Generalities	429
2. Bounded Harmonic Functions	434
3. The Poisson Integral Formula for X4. The Fatou Theorem	439
5. The Furstenberg Compactification	449
	452
§4. Harmonic Functions on Bounded Symmetric Domains.	
1. The Bounded Realization of a Hermitian Symmetric Space	452
2. The Geodesics in a Bounded Symmetric Domain	454
3. The Restricted Root Systems for Bounded Symmetric	455
Domains	462
4. The Action of G_o on D and the Polydisk in D	464
5. The Shilov Boundary of a Bounded Symmetric Domain	471
6. The Dirichlet Problem for the Shilov Boundary	472
7. The Hua Equations	478
8. Integral Geometry Interpretation	
§5. The Wave Equation on Symmetric Spaces.	480
1. Introduction. Huygens' Principle	480
2. Huygens' Principle for Compact Groups and Symmetric	400
Spaces $X = G/K$ (G complex)	483
3. Huygens' Principle and Cartan Subgroups	489
4. Orbital Integrals and Huygens' Principle	494
5. Energy Equipartition	498

xii CONTENTS

§ 6.	Eigenfunctions and Hyperfunctions.	503
	1. Arbitrary Eigenfunctions	503
	2. Exponentially Bounded Eigenfunctions	508
Ex	tercises and Further Results.	509
No	otes.	514
(CHAPTER VI. Eigenspace Representations.	517
§ 1.	Generalities.	517
	1. A Motivating Example	517
	2. Eigenspace Representations on Function- and Distribution-	
	Spaces	518
	3. Eigenspace Representations for Vector Bundles	519
§ 2.	Irreducibility Criteria for a Symmetric Space.	521
	1. The Compact Case	521
	2. The Euclidean Type	524
	3. The Noncompact Type	524
§ 3.	Eigenspace Representations for the Horocycle Space	
	G/MN.	526
	1. The Principal Series	526
	2. The Spherical Principal Series. Irreducibility	527
	3. Conical Distributions and the Construction of the Inter-	7 00
	twining Operators	533 536
	4. Convolution on G/MN	990
§ 4.	Eigenspace Representations for the Complex Space G/N.	541
	1. The Algebra $\mathbf{D}(G/N)$	541
	2. The Principal Series	544
	3. The Finite-Dimensional Holomorphic Representations	544
§ 5.	Two Models of the Spherical Representations.	546
Exe	ercises and Further Results.	549
No	tes.	552
SOI	LUTIONS TO EXERCISES.	553
BIE	ELIOGRAPHY.	581
SYI	MBOLS FREQUENTLY USED.	603
***	NEV.	007
INL	DEX.	607