Contents

Preface to the Second Edition	111	
Preface to the First Edition		
Chapter 1. Some Preliminaries	1	
1. The Rudiments of Set Theory	1	
2. Some Logic	6	
3. Mathematical Induction	9	
4. Inequalities and Absolute Value	13	
5. Equivalence Relations	16	
Chapter 2. Vector Spaces	19	
1. The Cartesian Plane	19	
2. The Definition of a Vector Space	24	
3. Some Elementary Properties of Vector Spaces	30	
4. Subspaces	33	
5. Linear Transformations	39	
6. Linear Transformations on Euclidean Spaces	46	
	w/iii	

Chapter 3. The Derivative		
1.	Normed Vector Spaces	56
2.	Open and Closed Sets	60
3.	Continuous Functions Between Normed Vector Spaces	65 75
4.	Elementary Properties of Continuous Functions	
5.	The Derivative	80
6.	Elementary Properties of the Derivative	85
7.	Partial Derivatives and the Jacobian Matrix	87
Ch	apter 4. The Structure of Vector Spaces	95
1.	Spans and Linear Independence	96
2.	Bases	101
3.	Bases and Linear Transformations	105
4.	The Dimension of a Vector Space	110
5.	Inner Product Spaces	116
6.	The Norm on an Inner Product Space	121
7.	Orthonormal Bases	123
8.	The Cross Product in R^3	130
Ch	apter 5. Compact and Connected Sets	133
1.	Convergent Sequences	133
2.	Compact Sets	139
3.	Upper and Lower Bounds	143
4.	Continuous Functions on Compact Sets	147
5.	A Characterization of Compact Sets	151
6.	Uniform Continuity	155
7.	Connected Sets	157
Ch	napter 6. The Chain Rule, Higher Derivatives, and Taylor's	
	Theorem	163
1.	The Chain Rule	164
2.	Proof of the Chain Rule	170
3.	Higher Derivatives	173
4.	Taylor's Theorem for Functions of One Variable	181
5.	Taylor's Theorem for Functions of Two Variables	186
6.	Taylor's Theorem for Functions of n Variables	191
7.	A Sufficient Condition for Differentiability	195
8.	The Equality of Mixed Partial Derivatives	200

Contents	ix
Contents	ix

Ch	apter 7. Linear Transformations and Matrices	203
1.	The Matrix of a Linear Transformation	203
2.	Isomorphisms and Invertible Matrices	207
3.	Change of Basis	211
4.	The Rank of a Matrix	216
5.	The Trace and Adjoint of a Linear Transformation	219
6.	Row and Column Operations	227
7.	Gaussian Elimination	232
Ch	apter 8. Maxima and Minima	239
1.	Maxima and Minima at Interior Points	240
2.	Quadratic Forms	246
3.	Criteria for Local Maxima and Minima	252
4.	Constrained Maxima and Minima: I	257
5.	The Method of Lagrange Multipliers	263
6.	Constrained Maxima and Minima: II	268
7.	The Proof of Proposition 2.3	273
Ch	apter 9. The Inverse and Implicit Function Theorems	277
1.	The Inverse Function Theorem	277
2.	The Proof of Theorem 1.3	283
3.	The Proof of the General Inverse Function Theorem	285
4.	The Implicit Function Theorem: I	292
5.	The Implicit Function Theorem: II	296
Ch	apter 10. The Spectral Theorem	303
1.	Complex Numbers	304
2.	Complex Vector Spaces	308
3.	Eigenvectors and Eigenvalues	314
4.	The Spectral Theorem	318
5.	Determinants	324
6.	Properties of the Determinant	329
7.	More on Determinants	336
8.	Quadratic Forms	340
Chapter 11. Integration		345
1.	Integration of Functions of One Variable	345
2.	Properties of the Integral	353
3.	The Integral of a Function of Two Variables	359
4.	The Integral of a Function of n Variables	366

x		Contents
5.	Properties of the Integral	375
6.	Integrable Functions	379
7.	The Proof of Theorem 6.2	384
Ch	napter 12. Iterated Integrals and the Fubini Theorem	387
1.	The Fubini Theorem	387
2.	Integrals Over Nonrectangular Regions	393
3.	More Examples	399
4.	The Proof of Fubini's Theorem	407
5.	Differentiating Under the Integral Sign	409
6.	The Change of Variable Formula	412
7.	The Proof of Theorem 6.2	418
Ch	napter 13. Line Integrals	427
1.	Curves	427
2.	Line Integrals of Functions	431
3.	Line Integrals of Vector Fields	436
4.	Conservative Vector Fields	443
5.	Green's Theorem	450
6.	The Proof of Green's Theorem	455
Ch	apter 14. Surface Integrals	461
1.	Surfaces	461
2.	Surface Area	468
3.		475
4.	Stokes' Theorem	481
Ch	apter 15. Differential Forms	487
1.	The Algebra of Differential Forms	487
2.	Basic Properties of the Sum and Product of Forms	492
3.	The Exterior Differential	494
4.	Basic Properties of the Exterior Differential	500
5.	The Action of Differentiable Functions on Forms	502
6.	Further Properties of the Induced Mapping	505
Chapter 16. Integration of Differential Forms		509
1.	Integration of Forms	509
2.	The General Stokes' Theorem	513
3.	Green's Theorem and Stokes' Theorem	517
4.	The Gauss Theorem and Incompressible Fluids	519
5.	Proof of the General Stokes' Theorem	525

Contents		xi	
Appendix 1. The	Existence of Determinants	527	
Appendix 2. Jord	an Canonical Form	531	
1. Generalized Eig	envalues	531	
2. The Jordan Can		534	
3. Polynomials and	d Linear Transformations	540	
4. The Proof of Th		545	
5. The Proof of Th	neorem 2.2	549	
Solutions of Selecte	ed Exercises	553	
Index		577	