Contents

87

92

	Al
Preface to the First Edition	
PART ONE INTRODUCTION, HISTORICAL BACKGROUND, AND NOTATIONS	
Chapter 1 Introduction and Historical Background 1. Number Theory—The Queen of Mathematics 2. A Problem 3. Something About the Contents of This Book 4. Number Theory and Other Branches of Mathematics	3 3 4 6
5. The Distribution of Prime Numbers	6 7
6. Fermat's "Last Theorem"	9
7. The Theory of Partitions	10
8. Elementary Number Theory	11
Chapter 2 Introductory Remarks and Notations	13
PART TWO ELEMENTARY NUMBER THEORY	
Chapter 3 Divisibility 1. Generalities and Fundamental Theorem	19
2. Discussion of Two Objections	19
3. An Example of Hilbert	25 26
4. Two Further Theorems	28
5. Some Results Concerning the Distribution of Prime Numbers	28
Chapter 4 Congruences	35
1. Congruences as Equivalence Relations—General Properties	35
2. Operations with Residue Classes	39
3. Theorems of Fermat, Euler, and Wilson	43
4. Linear Congruences5. The Chinese Remainder Theorem	45 48
6. On Primitive Roots	50
7. *Congruences of Higher Degrees	55
Chapter 5 Quadratic Residues	67
1. Introduction	67
2. The Legendre Symbol and the Law of Quadratic Reciprocity	68
3. *The Jacobi and Kronecker Symbols	74
Chapter 6 Arithmetical Functions	81
1. Introduction	81
2. The Function [x]	81
3. The Function $y = ((x))$	83
4. The Euler Function $\phi(\mathbf{n})$	85

Preface

5. The Möbius Function $\mu(n)$

6. Liouville's Function

	he Function $\delta_k(n)$ Perfect Numbers	92
	Ramanujan Sums	93
	unctions Related to Prime Numbers	94
	ormulae that Yield Primes	97
	On the Sum Function $M(x)$	101
12.		102
Chapte		109
	stroduction	109
	efinition and Notations	109
	arvey of Methods	112
	enerating Functions	112
5. Gi	•	124
	the Size of $p(n)$	127
	ome Lemmas roof of the Theorem	130
8. Pi	OOI OI the Theorem	132
PART	THREE TOPICS FROM ANALYTIC AND ALGEBRAIC NUMBER THEORY	
Chapte	er 8 The Distribution of Primes and the Riemann Zeta Function	143
1. Th	ne Distribution of Primes and the Sieve Method	143
	om Tchebycheff to Landau	144
3. Th	ne Riemann Zeta Function	145
4. Th	ne Zeta Function and $\pi(x)$	148
5. Fu	orther Theory of the Zeta Function	149
6. Th	he Functional Equation	153
7. Tł	ne values of ζ(s) at Integral Arguments	155
8. Th	ne Zeta Function and Its Derivatives for σ Close to 1	158
9. Co	omments on the Zeta Function	164
Chapte	er 9 The Prime Number Theorem	169
1. In	troduction	169
2. Sk	etch of the Proof	170
3. So	me Lemmas	173
4. Pr	oof of the PNT	177
Chapte	er 10 The Arithmetic of Number Fields	187
1. Int	troduction	187
2. Fie	elds and Rings of Algebraic Numbers	189
	ne Quadratic Field $Q(\sqrt{2})$	192
	the Ring $I(\sqrt{2})$ of Integers of $K = Q(\sqrt{2})$ and its Units	195
	ctorization in $K = Q(\sqrt{2})$	197
	e Euclidean Algorithm in $Q(\sqrt{2})$	199
	the Field $Q(\sqrt{-5})$	200
	he Field $Q(\sqrt{5})$	204
	the Gaussian Field $K = Q(\sqrt{-1})$	205
	adratic Fields	207
	clotomic Fields	208
	her Algebraic Number Fields	211
	eger and Units in Algebraic Number Fields	213

Chapter 11 Ideal Theory	220
1. Introduction	220
2. Definition and Elementary Properties of Ideals	220
3. Divisibility Properties of Ideals	222
4. Uniqueness of Factorization of Ideals into Prime Ideals	224
5. Ideal Classes and the Class Number	225
J. Adda Clabbo and the Clabs Panion	
Chapter 12 Primes in Arithmetic Progressions	233
1. Introduction and Dirichlet's Theorem	233
2. Characters	235
3. Dirichlet's <i>L</i> -Functions	238
4. Proof of Theorem 1	243
5. Some Auxiliary Results	243
6. End of the Proof of Theorem 1	247
7. Dirichlet's Approach	248
8. Concluding Remarks	249
Chapter 13 Diophantine Equations	255
1. Introduction	255
2. Hilbert's Tenth Problem	257
3. Effective Methods	258
4. The Genus of a Curve	259
5. The Theorems and Conjectures of A. Weil	262
6. The Hasse Principle	263
7. Linear and Quadratic Diophantine Equations	264
8. Representations by Sums of Two Squares	265
9. Representations by Sums of Three Squares	267
10. A Theorem of Legendre	269
11. Proof of Legendre's Theorem	270
12. Lagrange's Theorem and the Representation of Integers as	
Sums of Four Squares	273
13. Representations of Integers as Sums of r Squares	277
14. The Mordell-Weil Theorem	277
15. Bachet's Equation	281
16. Final Remarks	285
Chapter 14 Fermat's Equation	289
1. Introduction	289
2. Solution of Fermat's Equation for $n = 2$	291
3. Proof of the FC for $n = 4$	292
4. Proof of the FC for $p = 3$	293
5. Case I for $p = 5$	298
6. Case I for an Arbitrary Prime p	300
7. Regular Primes	304
8. Proof of the FC for Regular Primes in Case I	308
9. Proof of the FC for Regular Primes in Case II	310
10. Some Final Remarks	315
Come I illu Romano	
Answers to Selected Problems	321
Subject Index	327
Name Index Index of Functions	331 335
INGCA OF FUNCTIONS	555