Contents

Preface	хi
Acknowledgements	xiii
Introduction	1
Polyhedra in architecture	1
Polyhedra in art	2
Polyhedra in ornament	3
Polyhedra in nature	4
Polyhedra in cartography	7
Polyhedra in philosophy and literature	9
About this book	9
The inclusion of proofs	10
Approaches to the book	11
Basic concepts	12
Making models	14
1. Indivisible, Inexpressible and Unavoidable	17
Castles of eternity	17
Egyptian geometry	19
Babylonian geometry	23
Chinese geometry	24
A common origin for oriental mathematics	28
Greek mathematics and the discovery of incommensurability	29
The nature of space	33
Democritus' dilemma	35
Liu Hui on the volume of a pyramid	38
Eudoxus' method of exhaustion	41
Hilbert's third problem	44
2. Rules and Regularity	51
The Platonic solids	51
The mathematical paradigm	58
Abstraction	58
Primitive objects and unproved theorems	59

vi

CONTENTS

The problem of existence	61
Constructing the Platonic solids	66
The discovery of the regular polyhedra	70
What is regularity?	74
Bending the rules	79
The Archimedean solids	79
Polyhedra with regular faces	86
3. Decline and Rebirth of Polyhedral Geometry	95
The Alexandrians	95
Mathematics and astronomy	97
Heron of Alexandria	98
Pappus of Alexandria	99
Plato's heritage	100
The decline of geometry	101
The rise of Islam	102
Thabit ibn Qurra	103
Abu'l-Wafa	104
Europe rediscovers the classics	104
Optics	105
Campanus' sphere	106
Collecting and spreading the classics	107
The restoration of the Elements	108
A new way of seeing	109
Perspective	111
Early perspective artists	112
Leon Battista Alberti	114
Paolo Uccello	115
Polyhedra in woodcrafts	116
Piero della Francesca	118
Luca Pacioli	122
Albrecht Dürer	126
Wenzeln Jamnitzer	128 132
Perspective and astronomy	132
Polyhedra revived	
4. Fantasy, Harmony and Uniformity	139
A biographical sketch	139 142
A mystery unravelled	142 148
The structure of the universe	148

	VII
Fitting things together	149
Rhombic polyhedra	151
The Archimedean solids	156
Star polygons and star polyhedra	168
Semisolid polyhedra	173
Uniform polyhedra	175
5. Surfaces, Solids and Spheres	181
Plane angles, solid angles, and their measurement	183
Descartes' theorem	187
The announcement of Euler's formula	189
The naming of parts	191
Consequences of Euler's formula	193
Euler's proof	197
Legendre's proof	198
Cauchy's proof	200
Exceptions which prove the rule	202
What is a polyhedron?	205
Von Staudt's proof	210
Complementary viewpoints	213
The Gauss–Bonnet theorem	215
6. Equality, Rigidity and Flexibility	219
Disputed foundations	220
Stereo-isomerism and congruence	225
Cauchy's rigidity theorem	228
Cauchy's early career	233
Steinitz' lemma	235
Rotating rings and flexible frameworks	237
Are all polyhedra rigid?	240
The Connelly sphere	243
Further developments	244
When are polyhedra equal?	247
7. Stars, Stellations and Skeletons	249
Generalised polygons	249
Poinsot's star polyhedra	251
Poinsot's conjecture	256
Cayley's formula	257
Cauchy's enumeration of star polyhedra	259

viii	CONTENTS

Face-stellation Stellations of the icosahedron Bertrand's enumeration of star polyhedra Regular skeletons	263 267 281 282
8. Symmetry, Shape and Structure What do we mean by symmetry? Rotation symmetry Systems of rotational symmetry are there? Reflection symmetry Prismatic symmetry types Compound symmetry and the S _{2n} symmetry type Cubic symmetry types Icosahedral symmetry types Determining the correct symmetry type Groups of symmetries Crystallography and the development of symmetry	289 289 291 292 297 300 301 305 308 311 312 314 318
9. Counting, Colouring and Computing Colouring the Platonic solids How many colourings are there? A counting theorem Applications of the counting theorem Proper colourings How many colours are necessary? The four-colour problem What is proof?	327 328 330 331 334 337 347 348 354
10. Combination, Transformation and Decoration Making symmetrical compounds Symmetry breaking and symmetry completion Are there any regular compounds? Regularity and symmetry Transitivity Polyhedral metamorphosis The space of vertex-transitive convex polyhedra Totally transitive polyhedra Symmetrical colourings Colour symmetries	359 359 361 365 366 367 373 376 385 394

	ix
Perfect colourings The solution of fifth degree equations	400 402
Appendix I	406
Appendix II	408
Sources of Quotations	411
Bibliography	416
Name Index	439
Subject Index	443