Contents

Fore	eword (by W. D. Brownawell)
Pref	ace to the English editionix
Pref	acex
Note	ationxvii
Intro	oduction1
§ 1.	Approximation of algebraic numbers
§ 2.	The classical method of Hermite-Lindemann
§ 3.	Methods arising from the solution of Hilbert's Seventh Problem,
	and their subsequent development4
§ 4.	Siegel's method and its further development
Cha	pter 1. Approximation of real and algebraic numbers11
§ 1.	Approximation of real numbers by algebraic numbers
§ 2.	Simultaneous approximation
§ 3. § 4.	Approximation of algebraic numbers by rational numbers
§ 4. § 5.	Further refinements and generalizations of Liouville's Theorem35
-	arks
Cha	pter 2. Arithmetic properties of the values of the exponential
	tion at algebraic points41
§ 1.	Transcendence of e
§ 1. § 2.	Transcendence of π
§ 2. § 3.	Transcendence of the values of the exponential function at
3 5.	algebraic points
§ 4.	Approximation of e^z by rational functions

§ 5.	Linear approximating forms for $e^{\rho_1 z}, \dots, e^{\rho_m z}$	63
§ 6.	A set of linear approximating forms	
§ 7.	Lindemann's Theorem	
§ 8.	Linear approximating forms and the Newton interpolation series	,0
0	for the exponential function	75
Rem	arks	
COIII		//
Chap	oter 3. Transcendence and algebraic independence of the values of	
	actions which are not connected by algebraic equations over the	
	of rational functions	70
§ 1.	E-functions	79
§ 2.	The First Fundamental Theorem	81
§ 3.	Some properties of linear and fractional-linear forms	
§ 4.	Properties of linear forms in functions which satisfy a system	
	of homogeneous linear differential equations	88
§ 5.	Order of zero of a linear form at $z = 0$	
§ 6.	The determinant of a set of linear forms	
§ 7.	Passing to linearly independent numerical linear forms	
§ 8.	Auxiliary lemmas on solutions of systems of homogeneous	
,	linear equations	102
§ 9.	Functional linear approximating forms	
§ 10.	Numerical linear approximating forms	110
§ 11.	Rank of the m -tuple $f_1(\xi), \dots, f_m(\xi)$	
§ 12.	Proof of the First Fundamental Theorem	110
§ 12. § 13.	Consequences of the First Fundamental Theorem	121
_	Consequences of the First Fundamental Theorem	. 121
Cilla	arks	. 126
Chan	ter 4. Transcendence and algebraic independence of the values of	
snup E fun	actions which are connected by algebraic equations over the field	
st vat	tional functions	100
ij rai	tional functions	.128
§ 1.	Rank of the <i>m</i> -tuple $f_1(\xi), \ldots, f_m(\xi)$.128
§ 2.	Some lemmas	. 131
§ 3.	Estimate for the dimension of a vector space spanned by	
	monomials in elements of a field extension	134
§ 4.	The Third Fundamental Theorem	
5.	Transcendence of the values of E-functions connected by	,
	arbitrary algebraic equations over $C(z)$	143
6.	Algebraic independence of the values of E-functions	. 173
,	which are connected by arbitrary algebraic equations over $C(z)$	1/17

§ 7.	E-functions connected by special types of equations	149
§ 8.	E-functions connected by algebraic equations with constant	
	coefficients	15
§ 9.	E-functions which are connected by a single algebraic equation	
	over $\mathbf{C}(z)$	158
§ 10.	Minimal equations	16.
§ 11.	Dimension of the vector spaces spanned by monomials in the	
	elements of a field extension	168
§ 12.	Algebraic independence of the values of IE-functions	17
§ 13.	Algebraic independence of the values of KE-functions	174
Rema	urks	
C)		
	ter 5. Transcendence and algebraic independence of the values of	
E-fun	ctions which satisfy first order linear differential equations	179
§ 1.	Hypergeometric E-functions	179
§ 2.	The simplest hypergeometric E-functions	
§ 3.	Sets of solutions of first order linear differential equations	
§ 4.	Some lemmas	
§ 5.	Proof of the theorems	
-	ırks	
		200
٠.		
	ter 6. Algebraic independence of the values of E-functions which	
satisf _.	y second order linear differential equations	207
§ 1.	A general theorem on algebraic independence of the values of	
3	an E-function and its derivative	207
§ 2.	The functions $K_{\lambda}(z)$ associated to Bessel functions	
§ 3.	The functions $K_{\lambda}(z)$ and e^z	
§ 4.	Kummer functions	
§ 5.	Solutions of non-homogeneous linear differential equations	
•	rks	
ICIIIa	IKS	4.5
Chap	ter 7. Solutions of certain linear differential equations of	
arbitr	rary order	232
§ 1.	Solutions of non-homogeneous differential equations	232
§ 1. § 2.	Solutions of homogeneous differential equations	
	Corollaries of Theorems 1 and 2	
§ 3.	rks	

	pter 8. Arithmetic methods applied to solutions of linear rential equations of arbitrary order	240
-	•	
§ 1.	Statement of the theorems	
§ 2.	Auxiliary lemmas	
§ 3.	Proof of Theorems 1–5	
§ 4.	Proof of Theorems 6 and 7	
§ 5.	Further results	264
Chap	pter 9. Siegel's Theorem	271
§ 1.	Statement of the theorem and some basic auxiliary results	271
§ 2.	Some lemmas	
§ 3.	Some properties of solutions of second order homogeneous linear	
	differential equations	278
§ 4.	Algebraic independence of solutions of a set of second order	
	homogeneous linear differential equations	283
§ 5.	Proof of Siegel's Theorem	287
§ 6.	Solutions of non-homogeneous linear differential equations	291
§ 7.	Generalizations of Siegel's Theorem	300
Chap	pter 10. Solutions of linear differential equations of prime order $p \dots$	307
§ 1.	Statement of the basic results	307
§ 2.	The homogeneous ideal I	313
§ 3.	Algebraic functions of several variables	315
§ 4.	The differential operator G	319
§ 5.	The differential operators S and δ	322
§ 6.	A lemma on linear approximation	325
§ 7.	End of the proof of Theorem 7	328
§ 8.	Linear reducibility	
§ 9.	Proof of Theorems 6 and 5	
Rem	narks	347
Chaj	pter 11. The algebraic independence measure of values of	
IE-fu	unctions	349
§ 1.	Definition of the measures	
§ 2.	The linear independence measure of values of IE-functions	
§ 3.	The algebraic independence measure of values of IE-functions	
	which are not connected by algebraic equations over $C(z)$	360
§ 4 .	Auxiliary results	365

§ 5.	The algebraic independence measure of values of IE-functions	
	which are connected by algebraic equations over $C(z)$	370
§ 6.	Some applications of the general theorems	373
Rema	arks	377
C1	10 60	
_	ter 12. The algebraic independence measure of values of	
KE-fu	unctions	378
§ 1.	The fundamental lemma	378
§ 2.	Bounds for the measures of the values of E-functions which are	
	not connected by algebraic equations over $C(z)$	383
§ 3.	Bounds for the measures of the values of E-functions which are	
	connected by a single algebraic equation over $C(z)$	386
§ 4.	Bounds for the measures of the values of E-functions which are	
	connected by arbitrary algebraic equations over $C(z)$	389
§ 5.	Algebraic independence of the values of E-functions in	
	conjugate fields	391
§ 6.	An auxiliary theorem	392
§ 7.	Consequences of the auxiliary theorem	398
§ 8.	Some applications of the general theorems	400
Rema	urks	
Chap	ter 13. Effective bounds for measures	405
§ 1.	Definitions and notation	405
§ 2.	Refinement of the fundamental lemmas	
§ 3.	Bounds for linear independence measures	
§ 4.	Bounds for algebraic independence measures	
§ 5.	Some applications of the general theorems	
-	urks	
		40.
Conc	luding remarks	436
Suppl	lementary remarks on recent work for the English edition	444
Biblic	ography	452